付録—1 対策区分判定要領

1. 対策	段区分判定の基本	
1. 1		. 1
1. 2		. 2
1. 3		. 2
1.		_
2 一郎	段的性状・損傷の特徴等と対策区分判定	. ર
	かりは、一貫のグルはみこれが色がりた	9
	腐 食	9
1		
2		
3	ゆるみ・脱落・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4	破 断	
(5)	防食機能の劣化	11
	7リート部材の損傷	
6	ひびわれ	
7	剥離·鉄筋露出 ····································	15
8	漏水・遊離石灰	17
9	抜け落ち	18
(1)	床版ひびわれ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
(12)	うき ······	
-	しの損傷	
(13)	- 遊間の異常 - · · · · · · · · · · · · · · · · · ·	24
(14)	路面の凹凸 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
(15)	舗装の異常・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
_	支承部の機能障害・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
<u>16</u>		
<u>[7]</u>	·	30
共通の		
(10)	補修・補強材の損傷・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
18	定着部の異常・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
19	変色·劣化 ·····	
20	漏水·滞水 ·····	
21)	異常な音・振動	
22	異常なたわみ	
23	変形・欠損	40
24	土砂詰まり ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
<u>(25)</u>		42
26	洗掘 ·····	
	увин	10
3	島の着目箇所	11
3. 1		11
		44

3. 3		
3. 4		56
3. 5		
3. 6		59
3. 7	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60
3.8	3 排水施設	
3. 9		60
3. 1	. 0 引張り材全般	61

1. 対策区分判定の基本

1.1 対策区分判定の内容

対策区分判定は、部材の重要性や他の部材との関係性、損傷の状態や損傷の進行状況、考えられる原因や環境の条件、現状の耐荷力や耐久性、損傷の進行性など様々な要因を総合的に評価し、原則として構造上の部材区分あるいは部位ごとに、損傷状態に対する次回定期点検までの橋の機能状態などの性能や健全性に対する措置方針についての一次的な評価(判定)を行うものである。

より的確な状態の把握と対策区分の判定を行うためには、対象である橋梁構造(含附属物)について、構造的特徴や使用材料などに関する十分な知識が必要である。したがって、判定にあたっては、必要な書類等についても調査を行うことが重要である。

判定にあたって一般的に必要となる情報のうち代表的なものは、次のとおりである。

【構造に関わる事項】

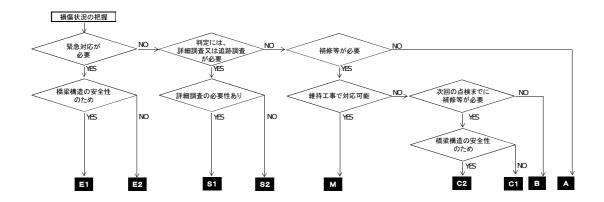
・構造形式,規模,構造の特徴

【設計・製作・施工の各条件に関わる事項】

- 設計年次, 適用示方書
- ・架設された年次
- 使用材料の特性

【使用条件に関わる事項】

- 交通量, 大型車混入率
- 橋梁の周辺環境・架橋条件
- ・維持管理の状況 (凍結防止剤の散布など)


【各種の履歴に関わる事項】

- ・橋梁の災害履歴,補修・補強履歴,第三者被害予防措置履歴
- ・過去の各種点検結果

この他, 定期点検で得られる変状図や写真, 損傷程度の評価結果が入手可能であれば適宜参考にするなど, 利用できる情報をできるだけ活用することを常に心がけるのがよい。

1.2 対策区分判定の流れ

対策区分判定の基本的な流れを次に示す。

1.3 所見

所見は、損傷状況について、部材区分単位で損傷種類ごとに橋梁診断員の見解を記述するものである。当該橋やその損傷等に対して、定期点検結果の妥当性の評価や、最終的にどのような措置を行うこととするのかなどの判断や意思決定は、定期点検結果以外の様々な情報も考慮して道路管理者が行うこととなる。そのため、単に対策区分の判定結果や損傷の外観的特徴などの客観的事実を記述するだけではなく、可能なものについて推定される損傷の原因、損傷位置、状態や推定される原因から判断される現状の橋の安全性、損傷の進行性、他の損傷との関わりなどの損傷に関する各種の判定とその根拠や考え方など、道路管理者が対応方針を判断するために必要となる事項について、橋梁診断員の意見を記述する。

2. 一般的性状・損傷の特徴等と対策区分判定

① 腐食

【一般的性状・損傷の特徴】

腐食は、(塗装やメッキなどによる防食措置が施された)普通鋼材では集中的に錆が発生している状態、又は錆が極度に進行し板厚減少や断面欠損(以下「板厚減少等」という。)が生じている状態をいう。耐候性鋼材の場合には、保護性錆が形成されず異常な錆が生じている場合や、極度な錆の進行により板厚減少等が著しい状態をいう。

腐食しやすい箇所は、漏水の多い桁端部、水平材上面など滞水しやすい箇所、支承部周辺 、通気性、排水性の悪い連結部、泥、ほこりの堆積しやすい下フランジの上面、溶接部であ ることが多い。

鋼トラス橋,鋼アーチ橋の主構部材(上弦材・斜材・垂直材等)が床版や地覆のコンクリートに埋め込まれた構造では、雨水が部材上を伝わって路面まで達することで、鋼材とコンクリートとの境界部での滞水やコンクリート内部への浸水が生じやすいため、局部的に著しく腐食が進行し、板厚減少等の損傷を生じることがあり、注意が必要な場合がある。

アーチ及びトラスの格点などの構造的に滞水や粉塵の堆積が生じやすい箇所では、局部的な塗膜の劣化や著しい損傷が生じることがあり、注意が必要な場合がある。

PC横締めのように同一構造が連続する場合, 1箇所の損傷が他箇所にも進行していることがあるため, 注意が必要な場合がある。

ケーブル定着部などカバー等で覆われている場合に、内部に水が浸入して内部のケーブル が腐食することがあり、注意が必要な場合がある。

【他の損傷との関係】

- ・ 基本的には、板厚減少等を伴う錆の発生を「腐食」として扱い、板厚減少等を伴わないと 見なせる程度の軽微な錆の発生は「防食機能の劣化」として扱う。
- ・ 板厚減少等の有無の判断が難しい場合には、「腐食」として扱う。
- ・ 耐候性鋼材で保護性錆が生じるまでの期間は、錆の状態が一様でなく異常腐食かどうかの 判断が困難な場合があるものの、板厚減少等を伴わないと見なせる程度の場合には「防食 機能の劣化」として扱う。
- ・ ボルトの場合も同様に、減肉等を伴う錆の発生を腐食として扱い、板厚減少等を伴わない と見なせる程度の軽微な錆の発生は「防食機能の劣化」として扱う。
- ・ 主桁ゲルバー部,格点,コンクリート埋込部においては,定期点検要領5(1)解説のとおり,それが属する各部材として,かつ,それぞれ単独としても取り扱う。(以下,各損傷において同じ。また,損傷程度の評価とは評価単位が異なるので注意すること)。

【その他の留意点】

- ・ 腐食を記録する場合, 塗装などの防食機能にも損傷が生じていることが一般的であり, これらについても同時に記録する必要がある。
- ・ 鋼材に生じた亀裂の隙間に滞水して、局部的に著しい隙間腐食を生じることがある。鋼材 に腐食が生じている場合に、溶接部近傍では亀裂が見落とされることが多いので、注意が

必要である。

・ 鋼コンクリート合成床版の底鋼板及び I 型鋼格子床版の底型枠は、鋼部材として扱う。

【対策区分判定】

○判定区分E1;橋梁構造の安全性の観点から,緊急対応が必要な損傷

ケーブル構造のケーブル材に著しい腐食が生じており、その腐食が構造安全性を著しく損なう状況や、鈑桁形式の桁端のウェブ及びアーチやトラスの格点部などに著しい板厚減少等が生じており、対象部材の耐荷力の喪失によって構造安全性を著しく損なう状況などにおいては、緊急対応が妥当と判断できる場合がある。

- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

同一の路線における同年代に架設された橋梁と比べて損傷の程度に大きな差があり、環境 や地域の状況など一般的な損傷要因だけでは原因が説明できない状況などにおいては、進行 性の評価や原因の特定など損傷の正確な判定のために詳細調査を実施することが妥当と判断 できる場合がある。

○判定区分M;維持工事で対応が必要な損傷

全体的な損傷はないものの、部分的に小さなあてきずなどによって生じた腐食があり、損傷の規模が小さく措置のしやすい場所にある状況などにおいては、維持工事で対応することが妥当と判断できる場合がある。

○判定区分B, C1, C2;補修等が必要な損傷

【所見を記載する上での参考】

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例		
鋼部材全般	・床版ひびわれからの漏水	・断面欠損による応力超過		
	・防水層の未設置	・応力集中による亀裂への進展		
	・排水装置設置部からの漏水	・ 主桁と床版接合部の腐食は, 桁の剛		
	・伸縮装置の破損部からの漏水	性低下、耐荷力の低下につながる。		
	自然環境(付着塩分)			

② 亀裂

【一般的性状・損傷の特徴】

鋼材に生じた亀裂である。鋼材の亀裂は、応力集中が生じやすい部材の断面急変部や溶接接合部などに現れることが多い。

亀裂は鋼材内部に生じる場合もあり、外観性状からだけでは検出不可能な場合がある。

亀裂の大半は極めて小さく、溶接線近傍のように表面性状がなめらかでない場合には、表面 きずや錆等による凹凸の陰影との見分けがつきにくい場合がある。なお、塗装がある場合に表 面に開口した亀裂は、塗膜われを伴うことが多い。

アーチやトラスの格点部などの大きな応力変動が生じることのある箇所については, **亀**裂が発生しやすい部位であることに加えて, 損傷した場合に構造全体系への影響が大きいため, 注意が必要な場合がある。

ゲルバー構造などにある桁を切り欠いた構造部分では,応力集中箇所となり,疲労上の弱点となる場合がある。

同一構造の箇所では、同様に亀裂が発生する可能性があるため、注意が必要な場合がある。

【他の損傷との関係】

- ・ 鋼材の亀裂損傷の原因は外観性状からだけでは判定できないことが多いので、位置や大き さなどに関係なく鋼材表面に現れたわれは全て「亀裂」として扱う。
- ・ 鋼材のわれや亀裂の進展により部材が切断された場合は、「破断」として扱う。
- ・ 断面急変部,溶接接合部などに塗膜われが確認され,直下の鋼材に亀裂が生じている疑い を否定できない場合には、鋼材の亀裂を直接確認していなくても、「防食機能の劣化」以 外に「亀裂」としても扱う。

【対策区分判定】

○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷

亀裂が鈑桁形式の主桁ウェブや鋼製橋脚の横梁のウェブに達しており、亀裂の急激な進展によって構造安全性を損なう状況などにおいては、緊急対応が妥当と判断できる場合がある。 アーチやトラスの格点部などの大きな応力変動が生じることのある箇所及びゲルバー構造などにある桁を切り欠いた構造部分の亀裂は、構造全体系への影響が大きいため、 亀裂の急激な進展のおそれがある状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分E2; その他, 緊急対応が必要な損傷

鋼床版構造で縦リブと床版の溶接部から床版方向に進展する亀裂が輪荷重載荷位置直下で生じて、路面陥没によって交通に障害が発生する状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

亀裂が生じた原因の推定や当該部材の健全性の判断を行うためには、表面的な長さや開口幅などの性状だけでなく、その深さや当該部位の構造的特徴や鋼材の状態(内部きずの有無、溶接の種類、板組や開先)、発生応力などを総合的に評価することが必要である。した

塗膜われが亀裂によるものかどうか判断できない場合には、仮に亀裂があった場合の進展 に対する危険性等も考慮して、できるだけ詳細調査による亀裂の確認を行う必要がある。

○判定区分M;維持工事で対応が必要な損傷

○判定区分B, C1, C2;補修等が必要な損傷

一般には、損傷程度にかかわらず、 **亀裂の進展防止の措置や補修等の必要があると判断することが妥当であることが多い**。

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
鋼部材全般	・支承の状態(機能障害による構造系の変	・亀裂による応力超過
	化)	・亀裂の急激な進行による部材
	・路面の不陸による衝撃力の作用	断裂
	・腐食の進行	
	・主桁間のたわみ差の拘束(荷重分配機能)	
	・溶接部の施工品質や継手部の応力集中	
	・荷重偏載による構造全体のねじれ	
	・活荷重直下の部材の局部的な変形	

③ ゆるみ・脱落

【一般的性状・損傷の特徴】

ボルトにゆるみが生じたり、ナットやボルトが脱落している状態をいう。ボルトが折損しているものも含む。

ここでは、普通ボルト、高力ボルト、リベット等の種類や使用部位等に関係なく、全てのボルト、リベットを対象としている。

【他の損傷との関係】

- ・支承ローラーの脱落は、「支承の機能障害」として扱う。
- ・支承アンカーボルトや伸縮装置の取付けボルトも対象とする。前者の損傷を生じている場合には、「支承の機能障害」としても扱う。

【対策区分判定】

○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷 接合部で多数のボルトが脱落しており, 接合強度不足で構造安全性を損なう状況などは, 緊急対応が妥当と判断できる場合がある。

○判定区分E2; その他, 緊急対応が必要な損傷

常に上揚力が作用するペンデル支承においてアンカーボルトにゆるみを生じ、路面に段差が生じるなど、供用性に直ちに影響する事態に至る可能性がある状況や、F11Tボルトにおいて脱落が生じており、遅れ破壊が他の部位において連鎖的に生じ、第三者被害が懸念される状況などは、緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

F11Tボルトでゆるみ・脱落が生じ、損傷したボルトと同じロットのボルトや同時期に施工されたボルトなど条件の近い他のボルトが連鎖的に遅れ破壊を生じるおそれがある状況などにおいては、詳細調査を実施することが妥当と判断できる場合がある。

○判定区分M;維持工事で対応が必要な損傷

高欄や付属物の普通ボルトにゆるみが発生しているなど損傷の規模が小さい状況においては、維持工事で対応することが妥当と判断できる場合がある(ただし、複数箇所でゆるみや脱落が生じている場合には、原因を調査して対応することが望ましい。)。

○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
鋼部材全般	・連結部の腐食	・直ちに耐荷力には影響はないもの
	・走行車両による振動	の,進行性がある場合には危険な
	・ボルトの腐食による断面欠損	状態となる。
	・F11Tボルトの遅れ破壊	・主桁のうき上がりにより伸縮装置
	・車両の衝突、除雪車による損傷	等に段差が生じる場合がある。
		・二次的災害

④ 破断

【一般的性状・損傷の特徴】

鋼部材が完全に破断しているか、破断しているとみなせる程度に断裂している状態をいう。 床組部材や対傾構・横構などの2次部材、あるいは高欄、ガードレール、添架物やその取り 付け部材などに多くみられる。

【他の損傷との関係】

- ・腐食や亀裂が進展して部材の断裂が生じており、断裂部以外に亀裂や腐食がない場合には 「破断」としてのみ扱い、断裂部以外にも亀裂や腐食が生じている場合にはそれぞれの損 傷としても扱う。
- ・ボルトやリベットの破断、折損は、「破断」ではなく、「ゆるみ・脱落」として扱う。
- ・支承も対象とし、この場合は「支承の機能障害」としても扱う。

【対策区分判定】

○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷

アーチ橋の支材や吊り材、トラス橋の斜材、PC橋のケーブル、ペンデル支承のアンカーボルトなどが破断し、構造安全性を著しく損なう状況などにおいては、緊急対応が妥当と判断できる場合がある。

アーチやトラスの格点部などの大きな応力変動が生じることのある箇所及びゲルバー構造などにある桁を切り欠いた構造部分の破断は、構造全体系への影響が大きいため、 亀裂の急激な進展のおそれがある状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分E2; その他, 緊急対応が必要な損傷

高欄が破断しており、歩行者あるいは通行車両等が橋から落下するなど、道路利用者等への障害のおそれがある状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

アーチ橋の支材や吊り材、トラス橋の斜材や鉛直材、対傾構、横構、支承ボルトなどで破断が生じており、風や交通振動と通常の交通荷重による疲労、腐食など原因が明確に特定できない状況においては、詳細調査を実施することが妥当と判断できる場合がある。

○判定区分M;維持工事で対応が必要な損傷

添架物の支持金具が局部的に破断しているなど損傷の規模が小さい状況においては、維持 工事で対応することが妥当と判断できる場合がある。

○判定区分B, C1, C2;補修等が必要な損傷

一般には、破断が生じている場合には補修等の必要があると判断することが妥当であることが多い。

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
	風や交通荷重による疲労,振動 腐食,応力集中	

⑤ 防食機能の劣化

防食機能の分類は、次による。

分類	防食機能	
1	塗装	
2	めっき, 金属溶射	
3	耐候性鋼材	

【一般的性状・損傷の特徴】

鋼部材を対象として,分類1においては防食塗膜の劣化,分類2においては防食皮膜の劣化により,変色,ひびわれ,ふくれ,はがれ等が生じている状態をいう。

分類3においては、保護性錆が形成されていない状態をいう。

【他の損傷との関係】

- ・塗装,溶融亜鉛めっき、金属溶射において、板厚減少等を伴う錆の発生を「腐食」として扱い、板厚減少等を伴わないと見なせる程度の軽微な錆の発生は「防食機能の劣化」として扱う。
- ・耐候性鋼材においては、板厚減少を伴う異常錆が生じた場合に「腐食」として扱い、粗い錆 やウロコ状の錆が生じた場合は「防食機能の劣化」として扱う。
- ・コンクリート部材の塗装は、対象としない。「補修・補強材の損傷」として扱う。
- ・火災による塗装の焼失やススの付着による変色は、「⑰その他」としても扱う。

【その他の留意点】

- ・局部的に「腐食」として扱われる錆を生じた箇所がある場合において、腐食箇所以外に防食機能の低下が認められる場合は、「防食機能の劣化」としても扱う。
- ・耐候性鋼材で保護性錆が生じるまでの期間は、錆の状態が一様でなく異常腐食かどうかの判断が困難な場合があるものの、板厚減少等を伴うと見なせる場合には「腐食」としても扱う。 板厚減少の有無の判断が難しい場合には、「腐食」として扱う。
- ・耐候性鋼材の表面に表面処理剤を塗布している場合,表面処理剤の塗膜の剥離は損傷として 扱わない。
- ・耐候性鋼材に塗装している部分は、塗装として扱う。
- ・溶融亜鉛めっき表面に生じる白錆は、損傷として扱わない。
- ・鋼コンクリート合成床版の底鋼板及び I 型鋼格子床版の底型枠は、鋼部材として扱う。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷】
- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷 大規模なうきや剥離が生じており,施工不良や塗装系の不適合などによって急激にはがれ

落ちることが懸念される状況や、異常な変色があり、環境に対する塗装系の不適合、材料の不良、火災などによる影響などが懸念される状況などにおいては、詳細調査を実施することが妥当と判断できる場合がある。

○判定区分M;維持工事で対応が必要な損傷

全体的な損傷はないものの、部分的に小さなあてきずによって生じた塗装のはがれ・発錆があり、損傷の規模が小さく措置のしやすい場所にある状況などにおいては、維持工事で対応することが妥当と判断できる場合がある。

○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
鋼部材全般	・床版ひびわれからの漏水	・腐食への進展
	・防水層の未設置	
	・排水装置設置部からの漏水	
	・伸縮装置の破損部からの漏水	
	自然環境(付着塩分)	

⑥ ひびわれ

【一般的性状・損傷の特徴】

コンクリート部材の表面にひびわれが生じている状態をいう。

【他の損傷との関係】

- ・ ひびわれ以外に、コンクリートの剥落や鉄筋の露出などその他の損傷が生じている場合に は、別途それらの損傷としても扱う。
- ・ 床版に生じるひびわれは「床版ひびわれ」として扱い、「ひびわれ」としては扱わない。
- ・ PC定着部においては当該部位でのみ扱い,当該部位を含む主桁等においては当該部位を 除いた要素において評価する。(以下,各損傷において同じ。)

【対策区分判定】

○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷

塩害地域においてコンクリート内部鉄筋が腐食にまで至っている場合、橋脚の沈下等に伴う 主桁の支点付近にひびわれが発生している場合で、今後も損傷進行が早いと判断され、構造 安全性を著しく損なう危険性が高い状況などにおいては、緊急対応が妥当と判断できる場合 がある。

○判定区分E2; その他, 緊急対応が必要な損傷

早期にうきに進行し、第三者等への障害の危険性が高い状況などにおいては、緊急対応が 妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

同一の路線における同年代に架設された橋梁と比べて損傷の程度に大きな差があり、環境 や地域の状況など一般的な損傷要因だけでは原因が説明できない状況などにおいては、詳細 調査を実施することが妥当と判断できる場合がある。

なお、次に示すような特定の事象については、基本的に詳細調査を行う必要がある。

[アルカリ骨材反応のおそれがある事象]

- ・コンクリート表面に網目状のひびわれが生じている。
- ・主鉄筋やPC鋼材の方向に沿ったひびわれが生じている。
- ・微細なひびわれ等に白色のゲル状物質の析出が生じている。

[塩害のおそれがある条件]

- ・道路橋示方書等で塩害対策を必要とする地域に架設されている。
- ・凍結防止剤が散布される道路区間に架設されている。
- ・架設時の資料で、海砂の使用が確認されている。
- ・半径100m以内に、塩害損傷橋梁が確認されている。
- ・定期点検等によって、錆汁など塩害特有の損傷が現れている。

ひびわれ原因が乾燥収縮と明らかで、今後の進行状況を見極めた後に補修等の要否を判断することで足りる状況などにおいては、追跡調査が妥当と判断できる場合がある。

ゲルバー部については、内部の配筋状況等によっても損傷位置が異なり、外観で確認できるひびわれだけでは、全貌を把握することが困難な場合もあり、追加調査が妥当と判断できる場合がある。

○判定区分M;維持工事で対応が必要な損傷

○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
コンクリート部材全般	・設計耐力不足 ・支承の機能不全 ・地震によるせん断ひびわれ ・凍結融解 ・プレストレス不足 ・締め固め不足 ・養生の不良 ・温度応力 ・乾燥収縮 ・コンクリート品質不良 ・支保工の沈下 ・早期脱型 ・不等沈下 ・コンクリートの中性化,塩害,アルカリ骨材反応,化学的侵食	・応力超過によるひびわれの進行,耐荷力の低下 ・ひびわれによる鉄筋の腐食 ・漏水,遊離石灰の発生

(7) 剥離・鉄筋露出

【一般的性状・損傷の特徴】

コンクリート部材の表面が剥離している状態を剥離, 剥離部で鉄筋が露出している場合を鉄 筋露出という。

【他の損傷との関係】

- ・剥離・鉄筋露出とともに変形・欠損(衝突痕)が生じているものは、別途、それらの損傷としても扱う。
- ・「剥離・鉄筋露出」には露出した鉄筋の腐食、破断などを含むものとし、「腐食」、「破断」などの損傷としては扱わない。
- ・床版に生じた剥離・鉄筋露出は、「床版ひびわれ」以外に本項目でも扱う。

【対策区分判定】

○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷

塩害地域において床版下面でPC鋼材が露出し、断面欠損にまで至っており、今後も損傷 進行が早いと判断され、構造安全性を著しく損なう危険性が高い状況などにおいては、緊急 対応が妥当と判断できる場合がある。

○判定区分E2; その他, 緊急対応が必要な損傷

剥離が発生しており、他の部位でも剥離落下を生じる危険性が極めて高く、第三者被害が懸念される状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

鉄筋の腐食によって剥離している箇所が見られ、鉄筋の腐食状況によって剥離が連続的に 生じるおそれがある状況などにおいては、詳細調査を実施することが妥当と判断できる場合 がある。

○判定区分M;維持工事で対応が必要な損傷

全体的な損傷はないものの、部分的に剥離が生じており、損傷の規模が小さく措置のしや すい場所にある状況などにおいては、維持工事で対応することが妥当と判断できる場合があ る。

なお,露出した鉄筋の防錆処理は,モルタル補修や断面回復とは別に,維持工事で対応 しておくことが望ましい。

○判定区分B, C1, C2;補修等が必要な損傷

7.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例	
コンクリート部材全般	・かぶり不足,豆板,打継目処理と浸透水による鋼材腐食 ・コンクリートの中性化,塩害,アルカリ骨材反応,化学的侵食 ・後埋コンクリートの締固め不足,鉄筋の不足 ・締固め不足 ・脱型時のコンクリート強度不足 ・周部応力の集中 ・衝突又は接触 ・鉄筋腐食による体積膨張 ・火災による強度低下 ・凍結融解 ・セメントの不良 ・骨材の不良(反応性及び風化性骨材)	・断面欠損による耐荷力の低下 ・鉄筋腐食による耐荷力の低下 ・輪荷重の繰り返しによる損 傷の拡大,床版機能の損失	

⑧ 漏水·遊離石灰

【一般的性状・損傷の特徴】

コンクリートの打継目やひびわれ部等から、水や石灰分の滲出や漏出が生じている状態をいう。

【他の損傷との関係】

- ・排水不良などでコンクリート部材の表面を伝う水によって発生している析出物は、遊離石 灰とは区別して「⑰その他」として扱う。また、外部から供給されそのままコンクリート 部材の表面を流れている水については、「漏水・滞水」として扱う。
- ・ひびわれ, うき、剥離など他に該当するコンクリートの損傷については、それぞれの項目 でも扱う。
- ・床版に生じた漏水・遊離石灰は、「床版ひびわれ」以外に本項目でも扱う。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷 床版からの遊離石灰に土砂分が混入しており, 床版防水層は損傷していることから今後も 損傷進行が早いと判断され, 構造安全性を著しく損なう危険性が高い状況などにおいては, 緊急対応が妥当と判断できる場合がある。
- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷 発生している漏水や遊離石灰が、排水の不良部分から表面的なひびわれを伝って生じているものか、部材を貫通したひびわれから生じているものか特定できない状況などにおいては、詳細調査を実施することが妥当と判断できる場合がある。
- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷
- ○所見を記載する上での参考

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
コンクリート部	・漏水の進行	・ひびわれによる鉄筋の腐食
材全般	・締め固め不十分	・伸縮装置の損傷
	・ひびわれの進行	・合成桁では主桁の剛性低下
	• 防水層未施工	・非合成桁でも合成作用の損失
	・打設方法の不良	・床版機能の損失
	・打継目の不良	コンクリートの損傷

⑨ 抜け落ち

【一般的性状・損傷の特徴】

コンクリート床版(間詰めコンクリートを含む。)からコンクリート塊が抜け落ちることをいう。

床版の場合には、亀甲状のひびわれを伴うことが多い。

間詰めコンクリートや張り出し部のコンクリートでは、周囲に顕著なひびわれを伴うことな く鋼材間でコンクリート塊が抜け落ちることもある。

【他の損傷との関係】

- ・ 床版の場合には、著しいひびわれが生じていてもコンクリート塊が抜け落ちる直前までは、 「床版ひびわれ」として扱う。
- ・ 剥離が著しく進行し、部材を貫通した場合に、「抜け落ち」として扱う。

【対策区分判定】

- ○判定区分E1;橋梁構造の安全性の観点から、緊急対応が必要な損傷 コンクリート床版(間詰めコンクリートを含む。)からのコンクリート塊の抜け落ちであ り、基本的には、構造安全性を著しく損なう状況と考えられ、緊急対応が妥当と判断される ことが多い。
- ○判定区分E2; その他, 緊急対応が必要な損傷

万一上記に該当しない場合であっても、抜け落ちが生じており、路面陥没によって交通に 障害が発生することが懸念される状況などにおいて、緊急対応が妥当と判断できる場合があ る。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

(参考)

PC-T桁の間詰め部においてひびわれや漏水・遊離石灰が発生しており、無筋で抜け落ちにつながるおそれがある状況などにおいては、当該損傷の対策区分として詳細調査を実施することが妥当と判断できる場合がある。

ちなみに、次のPC-T桁の間詰め部において、無筋の可能性があることが知られている。

- ・プレテン桁の設計が1971年以前、又は竣工年が1974年以前の橋梁
- ・ポステン桁の設計が1969年以前、又は竣工年が1972年以前の橋梁
- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷(参考)

上記S1, S2参考に記載した損傷に対する詳細調査などによって抜け落ちの可能性があ

ると判断した場合には、損傷の程度や発生位置が部材の機能に及ぼす影響、第三者に障害を 及ぼす可能性などの観点から、B、C1又はC2の判断が分かれると考えられる。

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
コンクリート床版	・ひびわれ、漏水、遊離石灰の進行	・輪荷重の繰り返しによる損傷の拡大、床版機能の損失

① 床版ひびわれ

【一般的性状・損傷の特徴】

鋼橋のコンクリート床版を対象としたひびわれであり、床版下面に一方向又は二方向のひび われが生じている状態をいう。

コンクリート橋のT桁橋のウェブ間(間詰め部を含む。),箱桁橋の箱桁内上面,中空床版橋及び箱桁橋の張り出し部のひびわれも対象である。

なお、溝橋の頂版がコンクリート部材からなるときに異常が認められる場合には、見られる 異常や活荷重の繰り返しの影響などについて考慮したうえで、必要であれば床板ひび割れとし ての対策区分の判定も実施する必要がある。

【他の損傷との関係】

- ・ 床版ひびわれの性状にかかわらず、コンクリートの剥離、鉄筋露出が生じている場合には、 それらの損傷としても扱う。
- ・ 床版ひびわれからの漏水,遊離石灰,錆汁などの状態は,本項目で扱うとともに,「漏水・ 遊離石灰」の項目でも扱う。
- ・ 著しいひびわれが生じ、コンクリート塊が抜け落ちた場合には、当該要素では「抜け落ち」 として扱う。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷 著しいひびわれを生じており, 上部構造全体の剛性の低下によって構造安全性を著しく 損なう状況などにおいては, 緊急対応が妥当と判断できる場合がある。
- ○判定区分E2; その他,緊急対応が必要な損傷 抜け落ち寸前の床版ひびわれが発生しており,剥離落下によって第三者被害が懸念される 状況などにおいては,緊急対応が妥当と判断できる場合がある。
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

放射上に広がるひびわれや遊離石灰が広範囲に見られる場合には、疲労のみが要因では ない劣化が進行している可能性がある状況などにおいては、詳細調査を実施することが妥 当と判断できる場合がある。

その他、『⑥ ひびわれ』と同様

- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
コンクリート床	• 設計耐力不足	・漏水や遊離石灰の進行等
版	・主桁作用による引張応力の作用	・活荷重によるひびわれの拡大
	・乾燥収縮	
	• 配力鉄筋不足	
	支持桁の不等沈下	

① うき

【一般的性状・損傷の特徴】

コンクリート部材の表面付近が浮いた状態をいう。

コンクリート表面に生じるふくらみなどの損傷から目視で判断できない場合にも,打音検査において濁音が生じることで検出できる場合がある。

【他の損傷との関係】

- ・ 浮いた部分のコンクリートが剥離している,又は打音検査により剥離した場合には,「剥離・鉄筋露出」として扱う。
- ・ コンクリート床版の場合も同様に、本損傷がある場合は本損傷で扱う。

【対策区分判定】

○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷 塩害地域のPC橋にうきが発生し, PCケーブルの腐食も確認され, 放置すると構造安全 性を著しく損なうおそれがある状況などにおいては, 緊急対応が妥当と判断できる場合があ る。

○判定区分E2; その他, 緊急対応が必要な損傷

コンクリート地覆,高欄,床版等にうきが発生しており,コンクリート塊が落下し,路下の通行人,通行車両に危害を与えるおそれが高い状況などにおいては,緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

うきが発生している箇所が見られ、鉄筋の腐食状況が不明で原因が特定できない状況、P C鋼棒の破断・突出に関わる腐食が疑われるが腐食状況が不明で原因が特定できない状況な どにおいては、詳細調査を実施することが妥当と判断できる場合がある。

- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷
- ○所見を記載する上での参考

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
コンクリート部 材全般	・かぶり不足,豆板,打継目処理と浸透水による内部鋼材の腐食による体積膨張 ・凍結融解,内部鋼材の錆 ・コンクリートの中性化,塩害,アルカリ骨材反応,化学的侵食 ・後埋コンクリートの締固め不足,鉄筋の不足 ・びでわれ,漏水,遊離石灰の進行 ・締固め不足 ・脱型時のコンクリート強度不足 ・開空時のコンクリート強度不足 ・周部応力の集中 ・衝突又は接触 ・火災による強度低下 ・セメントの不良	 ・断面欠損による耐荷力の低下 ・鉄筋腐食による耐荷力の低下 ・輪荷重の繰り返しによる損傷の拡大,床版機能の損失 ・ P C 鋼棒の突出

① 遊間の異常

【一般的性状・損傷の特徴】

桁同士の間隔に異常が生じている状態をいう。桁と桁、桁と橋台の遊間が異常に広いか、遊間がなく接触しているなどで確認できる他、支承の異常な変形、伸縮装置やパラペットの損傷などで確認できる場合がある。

【他の損傷との関係】

- ・伸縮装置や支承部で変形・欠損や支承の機能障害等の損傷を伴う場合には、それらの損傷 としても扱う。
- ・伸縮装置部の段差(鉛直方向の異常)については、「路面の凹凸」として扱う。
- ・耐震連結装置や支承の移動状態に偏りや異常が見られる場合, 高欄や地覆の伸縮部での遊 間異常についても, 「遊間の異常」として扱う。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷 遊間が異常に広がり, 自転車やオートバイが転倒するなど道路利用者等へ障害を及ぼす 懸念がある状況などにおいては, 緊急対応が妥当と判断できる場合がある。
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

下部構造の移動や傾斜が原因と予想されるものの、目視では下部構造の移動や傾斜を確認できない状況などにおいては、詳細調査を実施することが妥当と判断できる場合がある。

- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
伸縮装置	・下部構造の沈下・移動・傾斜	上部構造への拘束力の作用

⑭ 路面の凹凸

【一般的性状・損傷の特徴】

衝撃力を増加させる要因となる路面に生じる橋軸方向の凹凸や段差をいう。

【他の損傷との関係】

- ・発生原因や発生箇所にかかわらず、橋軸方向の凹凸や段差は全て対象とする。
- ・舗装のコルゲーション,ポットホールや陥没,伸縮継手部や橋台パラペット背面の段差など も対象とする。
- ・橋軸直角方向の凹凸(わだち掘れ)は、「舗装の異常」として扱う。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷 路面に著しい凹凸があり, 自転車やオートバイが転倒するなど道路利用者等へ障害を及 ぼす懸念がある状況などにおいては, 緊急対応が妥当と判断できる場合がある。
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷
- ○判定区分M;維持工事で対応が必要な損傷 凹凸が小さく、損傷が部分的で発生面積が小さい状況においては、舗装の部分的なオーバーレイなど維持工事で対応することが妥当と判断できる場合がある。
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
伸縮装置	・支承の沈下、セットボルトの破損	・ 主構造への衝撃力の作用, 交通障
	によるうき上がり	害
橋台背面の路面	・橋台基礎周辺地盤の洗掘に伴う橋	・路面の陥没による交通障害
	台背面土の吸出し	

① 舗装の異常

【一般的性状・損傷の特徴】

舗装の異常とは、コンクリート床版の上面損傷(床版上面のコンクリートの土砂化、泥状化) や鋼床版の損傷(デッキプレートの亀裂、ボルト接合部)が主な原因となり、舗装のうきやポットホール等として現出する状態をいう。なお、これら原因による損傷に限定するものではない。また、床版の損傷との関連性がある可能性があるため、ポットホールの補修痕についても、「舗装の異常」として扱う。

【他の損傷との関係】

- ・ 対象とする事象は、舗装のひびわれやうき、ポットホール等、床版の健全性を判断するために利用されるものである。舗装本体の維持修繕を判断するための判定ではないが、道路の維持管理上有用と思われる情報は別途記録しておくのがよい。
- ・ 床版上面損傷の影響が床版下面にも及んでいる場合には、それに該当する損傷(「床版ひびわれ」、「剥離・鉄筋露出」、「漏水・遊離石灰」など)についてそれぞれの項目でも扱う。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から、緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷

コンクリート床版の上面側が土砂化し、抜け落ち寸前であり、路面陥没によって交通に障害が発生する懸念がある状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

コンクリート床版の上面側の損傷が懸念されるものの,目視ではこれを確認できない状況 などにおいては,詳細調査を実施することが妥当と判断できる場合がある。

鋼床版デッキプレートの亀裂が懸念されるものの、目視ではこれを確認できない状況など においては、詳細調査を実施することが妥当と判断できる場合がある。

- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷

一般には、損傷程度にかかわらず、補修等の必要があると判断することが妥当であることが多い。

なお、評価に際しては、必要に応じて、床版下面の損傷状況と合わせて、維持工事等での 舗装の補修履歴を確認することが重要である。

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
コンクリート床版	・ひびわれ、漏水、遊離石灰の進行	・輪荷重の繰り返しによる損傷の拡大、床版機能の損失
鋼床版	・亀裂	輪荷重の繰り返しによる損傷の拡大、床版機能の損失局部の陥没

16 支承部の機能障害

支承部の分類は、次による。

分類	部位・部材
1	支承本体、アンカーボルト
2	落橋防止システム

【一般的性状・損傷の特徴】

当該支承の有すべき荷重支持や変位追随などの一部又は全ての機能が損なわれている状態をいう。

なお, 支承ローラーの脱落も対象とする。

また、落橋防止システム(桁かかり長を除く。)の有すべき桁移動制限や衝撃吸収機能などの一部又は全ての機能が損なわれている状態をいう。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷

支承ローラーの脱落により支承が沈下し、路面に段差が生じて自転車やオートバイが転倒するなど道路利用者等へ障害を及ぼす懸念がある状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

支承の可動状態や支持状態に異常がみられると同時に、鋼桁に座屈が生じていたり、溶接 部に疲労損傷が生じていることが懸念される状況などにおいては、詳細調査を実施すること が妥当と判断できる場合がある。

- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷
- ○所見を記載する上での参考

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
支承	・床版、伸縮装置の損傷による雨水と	・移動,回転機能の損失による拘束力
	土砂の堆積,防水層の未設置	の発生
	・腐食による板厚減少	・ 地震, 風等の水平荷重に対する抵抗
	・斜橋・曲線橋における上揚力作用	力の低下
	・支承付近の荷重集中	・主桁のうき上がりにより伸縮装置
	・支承の沈下,回転機能損失による拘	等に段差が生じる場合がある。
	東力の作用	・荷重伝達機能の損失
	・地震による過大な変形	・亀裂の主部材への進行

① その他

損傷内容の分類は次による。

分類	損傷内容
1	不法占用
2	落書き
3	鳥のふん害
4	目地材などのずれ、脱落
5	火災による損傷
6	その他

【一般的性状・損傷の特徴】

「損傷の種類」①~⑯, ⑱~❷のいずれにも該当しない損傷をいう。例えば、鳥のふん害、落書き、橋梁の不法占用、火災に起因する各種の損傷などを、「⑰その他」の損傷として扱う。

【他の損傷との関係】

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷 桁下でのたき火による主桁の熱劣化が生じていることが懸念される場合などにおいては, 詳細調査を実施することが妥当と判断できる場合がある。
- ○判定区分M;維持工事で対応が必要な損傷

鳥のふんや植物、表面を伝う水によって発生する汚れなどにより部材の表面が覆われており、部材本体の点検ができない場合などにおいては、維持工事で対応することが妥当と判断できる場合がある。

- ○判定区分B, C1, C2;補修等が必要な損傷
- ○所見を記載する上での参考

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
全般	・ 人為的損傷・ 自然災害	・橋梁の損傷
	・鳥獣による損傷	

⑩ 補修・補強材の損傷

補修・補強材の分類は次による。

ア)コンクリート部材への補修・補強材

分類	補修・補強材料
1	鋼板
2	繊維
3	コンクリート系
4	塗装

4)鋼部材への補修・補強材

分類	補修・補強材料
5	鋼板 (あて板等)

【一般的性状・損傷の特徴】

鋼板,炭素繊維シート,ガラスクロスなどのコンクリート部材表面に設置された補修・補強 材料や塗装などの被覆材料に、うき、変形、剥離などの損傷が生じた状態をいう。

また,鋼部材に設置された鋼板(あて板等)による補修・補強材料に,腐食等の損傷が生じた状態をいう。

コンクリート片の剥落防止対策済み箇所やPC-T桁の間詰め部の落下対策済み箇所にて、コンクリート塊が対策工と一体で落下する事例が生じている。表面からの目視によるだけではそれらの兆候の把握が困難と判断されるときには、触診や打音検査を行う必要がある。

【他の損傷との関係】

- ・ 補強材の損傷は、材料や構造によって様々な形態が考えられる。また、漏水や遊離石灰など補強されたコンクリート部材そのものの損傷に起因する損傷が現れている場合もあり、これらについても補強材の機能の低下と捉え、橋梁本体の損傷とは区別してすべて本項目「補修・補強材の損傷」として扱う。
- ・ 分類3においてひびわれや剥離・鉄筋露出などの損傷が生じている場合には、それらの損傷としても扱う。
- ・ 分類4は、「防食機能の劣化」としては扱わない。
- ・ 分類 5 において、鋼部材に設置された鋼板(あて板等)の損傷は、この項目のみで扱い、 例えば、「防食機能の劣化」や「腐食」では扱わない。一方、鋼板(あて板等)の損傷に伴 い本体にも損傷が生じている場合は、本体の当該損傷でも扱う。

【対策区分判定】

○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷

主桁及び床版の接着鋼板が腐食しており、補強効果が著しく低下し、構造安全性を著しく 損なう危険性が高い状況などにおいては、緊急対応が妥当と判断できる場合がある。 ○判定区分E2; その他, 緊急対応が必要な損傷

補強材が剥離しており、剥離落下によって第三者被害が懸念される状況などにおいては、 緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

漏水や遊離石灰が著しく、補強材のうきがあり、目視ではその範囲・規模が特定できない 状況などにおいては、詳細調査を実施することが妥当と判断できる場合がある。

その他外観的には損傷がなくても、他の部材の状態や振動、音などによって、補強効果の 喪失や低下が疑われることもあり、更なる調査が必要と判断される場合がある。

○判定区分M;維持工事で対応が必要な損傷

○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
コンクリート補強	・床版のひびわれ進行による漏水	・鋼板の板厚減少による床版機能
材全般	・防水層未施工	の低下
	・架橋環境	・主構造の腐食へと進行
鋼部材補強材全般	・応力集中	・主構造の腐食へと進行
	• 架橋環境	・主構造の亀裂の再進行

(18) 定着部の異常

定着部の分類は次による。

分類	定着部の種類
1	PC鋼材縦締め
2	PC鋼材横締め
3	その他
4	外ケーブル定着部又は偏向部

【一般的性状・損傷の特徴】

PC鋼材の定着部のコンクリートに生じたひびわれから錆汁が認められる状態,又はPC鋼材の定着部のコンクリートが剥離している状態をいう。

ケーブルの定着部においては、腐食やひびわれなどの損傷が生じている状態をいう。

斜張橋やエクストラドーズド橋, ニールセン橋, 吊橋などのケーブル定着部は, 「3その他」の分類とする。また, 定着構造の材質にかかわらず, 定着構造に関わる部品(止水カバー, 定着ブロック, 定着金具, 緩衝材など)の損傷の全てを対象として扱う。

なお、ケーブル本体は一般の鋼部材として、耐震連結ケーブルは落橋防止装置として扱う。 ケーブル定着部などがカバー等で覆われている場合は、内部に水が浸入して内部のケーブル が腐食することがあり、注意が必要である。

【他の損傷との関係】

PC鋼材の定着部や外ケーブルの定着部に腐食,剥離・鉄筋露出,ひびわれなどが生じている場合には、別途,それらの損傷としても扱う。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷

定着部のコンクリートにうきが生じてコンクリート塊が落下し、路下の通行人、通行車両 に危害を与える懸念がある状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

PC鋼材が破断して抜け出しており、グラウト不良が原因で他のPC鋼材にも腐食や破断の懸念がある状況などにおいては、詳細調査を実施することが妥当と判断できる場合がある。

- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷

一般には、損傷程度にかかわらず、補修等の必要があると判断することが妥当であること が多い。

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
定着部	・PC鋼材の腐食	・耐荷力の低下
	・ PC鋼材の破断(グラウトの不良)	
	・外ケーブル定着部の腐食	

(19) 変色・劣化

対象とする材料や材質による分類は次による。

分類	材料・材質
1	コンクリート
2	ゴム
3	プラスチック
4	その他

注)ここでの分類は部材本体の材料・材質によるものであり、被覆材料は対象としていない。部材本体が鋼の場合の被覆材料は「防食機能の劣化」、コンクリートの場合の被覆材料は「補修・補強材の損傷」として扱う。

【一般的性状・損傷の特徴】

コンクリートの変色など部材本来の色が変化する状態,ゴムの硬化,又はプラスチックの劣化など,部材本来の材質が変化する状態をいう。

【他の損傷との関係】

- ・鋼部材における塗装やめっきの変色は、対象としない。
- ・コンクリート部材の表面を伝う水によって発生する汚れやコンクリート析出物の固化、排気ガスや"すす"などによる汚れなど、材料そのものの変色でないものは、対象としない (「⑰その他」として扱う)。
- ・火災に起因する"すす"の付着による変色は、対象としない(「⑰その他」として扱う)。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

コンクリートが黄色っぽく変色するなど、内部への水の浸入・滞留、凍害やアルカリ骨材 反応の懸念がある状況などにおいては、詳細調査を実施することが妥当と判断できる場合が ある。

- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
コンクリート部	・打設方法の不良(締固め方法)	・耐荷力の低下
材全般,	・品質の不良(配合の不良, 規格外品)	・ひびわれによる鉄筋の腐食
プラスチック等	火災	
	・ 化学作用(骨材の不良,酸性雨,有害ガス,	
	凍結防止剤)	
	• 凍結融解	
	・塩害	
	・中性化	
	・コンクリート内部への水の浸入・滞留	

② 漏水・滞水

【一般的性状・損傷の特徴】

伸縮装置,排水施設等から雨水などが本来の排水機構によらず漏出している状態や,桁内部, 梁天端,支承部などに雨水が浸入し滞留している状態をいう。

激しい降雨などのときに排水能力を超えて各部で滞水を生じる場合がある。一時的な現象で、構造物に支障を生じないことが明らかな場合には、損傷として扱わない。

【他の損傷との関係】

- ・ コンクリート部材内部を通過してひびわれ等から流出するものについては, 「漏水・遊離 石灰」として扱う。
- ・ 排水管の損傷については、対象としない。排水装管に該当する損傷(「破断」、「変形・ 欠損」、「ゆるみ脱落」、「腐食」など)についてそれぞれの項目で扱う。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷
- ○判定区分M;維持工事で対応が必要な損傷 伸縮継手の一部から漏水し、その規模が小さい状況においては、維持工事で対応すること が妥当と判断できる場合がある。
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
部材全般	・ひびわれの進行	・鉄筋の腐食
	・防水層未施工	・合成桁では主桁の剛性低下
	・打設方法の不良	・耐荷力の低下
	・目地材の不良	・凍結融解による損傷
	・橋面排水処理の不良	・遊離石灰の発生
	・止水ゴムの損傷、シール材の損傷、	・主構造の腐食
	脱落、排水管の土砂詰まり	・床版の損傷
	・腐食、土砂詰まり	
	凍結によるわれ	
	・床版とますの境界部からの雨水の	
	浸入	

② 異常な音・振動

【一般的性状・損傷の特徴】

通常では発生することのないような異常な音・振動が生じている状態をいう。

【他の損傷との関係】

・ 異常な音・振動は、橋梁の構造的欠陥又は損傷が原因となり発生するものであり、それぞれが複合して生じる場合があるため、別途、それらの損傷として扱うとともに、「異常な音・振動」としても扱う。

【対策区分判定】

- ○判定区分E1;橋梁構造の安全性の観点から、緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷 車両の通過時に大きな異常音が発生し, 近接住民に障害を及ぼしている懸念がある状況 などにおいては, 緊急対応が妥当と判断できる場合がある。
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷 原因不明の異常な音・振動が発生しており,発生源や原因を特定できない状況などにおいては,詳細調査を実施することが妥当と判断できる場合がある。
- ○判定区分M;維持工事で対応が必要な損傷 添架物の支持金具のゆるみによるビビリ音があり、その規模が小さい状況においては、維持工事で対応することが妥当と判断できる場合がある。
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
鋼部材全般	・走行車両による振動	・ 亀裂の主部材への進行 ・ 応力集中による亀裂への進展

② 異常なたわみ

【一般的性状・損傷の特徴】

通常では発生することのないような異常なたわみが生じている状態をいう。

【他の損傷との関係】

- ・ 異常なたわみは、橋梁の構造的欠陥又は損傷が原因となり発生するものであり、それぞれ が複合して生じる場合があるため、別途、それらの損傷として扱うとともに、「異常なた わみ」としても扱う。
- ・ 定期点検で判断可能な「異常なたわみ」として対象としているのは、死荷重による垂れ下 がりであり、活荷重による一時的なたわみは異常として評価できないため、対象としない。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷 主桁にたわみが発生し, 構造機能の喪失によって構造安全性を著しく損なう状況などにお いては, 緊急対応が妥当と判断できる場合がある。
- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷 コンクリート桁の支間中央部が垂れ下がっており,原因を特定できない状況などにおいて は,詳細調査を実施することが妥当と判断できる場合がある。
- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
鋼部材全般	・走行車両による振動	・ 亀裂の主部材への進行 ・ 応力集中による亀裂への進展

② 変形·欠損

【一般的性状・損傷の特徴】

車の衝突や施工時の当てきず、地震の影響など、その原因にかかわらず、部材が局部的な変 形を生じている状態、又はその一部が欠損している状態をいう。

【他の損傷との関係】

- ・変形・欠損以外に、コンクリート部材で剥離・鉄筋露出が生じているものは、別途、「剥離・鉄筋露出」としても扱う。
- ・鋼部材における亀裂や破断などが同時に生じている場合には、それぞれの項目でも扱う。

【対策区分判定】

○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷

車両の衝突や雪崩などにより主桁が大きく変形しており、構造安全性を著しく損なう状況 などにおいては、緊急対応が妥当と判断できる場合がある。

アーチやトラスの格点部などの大きな応力変動が生じることのある箇所の変形は、構造全 体系への影響が大きいため、緊急対応が妥当と判断できる場合がある。

○判定区分E2; その他, 緊急対応が必要な損傷

高欄が大きく変形しており、歩行者あるいは通行車両など、道路利用者等への障害の懸念がある状況などにおいては、緊急対応が妥当と判断できる場合がある。

- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷
- ○判定区分M;維持工事で対応が必要な損傷

高欄において局部的に小さな変形が発生しているなどの状況においては、維持工事で対応 することが妥当と判断できる場合がある。

○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
部材全般	・かぶり不足	・二次的災害
	・局部応力の集中	・断面欠損による耐荷力の低下
	・衝突又は接触	・鋼材の腐食

② 土砂詰まり

【一般的性状・損傷の特徴】

排水桝や排水管に土砂が詰まっていたり,支承周辺に土砂が堆積している状態,また,舗装 路肩に土砂が堆積している状態をいう。

【他の損傷との関係】

【その他の留意点】

・支承部周辺に堆積している土砂は、支承部の損傷状況を把握するため、定期点検時に取り除くことが望ましい。

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷
- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷
- ○判定区分M;維持工事で対応が必要な損傷

排水桝のみに土砂詰まりが発生しており、その規模が小さい状況においては、維持工事で 対応することが妥当と判断できる場合がある。

○判定区分B, C1, C2;補修等が必要な損傷

排水管の全長に渡って土砂詰まりが生じ、規模的に維持工事で対応できない場合などが考えられる。

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
排水施設,	・腐食、土砂詰まり	・主構造の腐食
支承	凍結によるわれ	・床版の損傷
	・床版とますの境界部からの雨水	・移動,回転機能の損失による拘
	の浸入	東力の発生
	・床版、伸縮装置の損傷による雨水	
	と土砂の堆積	

② 沈下·移動·傾斜

【一般的性状・損傷の特徴】

下部構造又は支承が沈下、移動又は傾斜している状態をいう。

【他の損傷との関係】

・遊間の異常や伸縮装置の段差,支承部の機能障害などの損傷を伴う場合には、別途,それらの損傷としても扱う。

【対策区分判定】

○判定区分E1;橋梁構造の安全性の観点から、緊急対応が必要な損傷 下部構造が大きく沈下・移動・傾斜しており、構造安全性を著しく損なう状況などにおいては、緊急対応が妥当と判断できる場合がある。

○判定区分E2; その他, 緊急対応が必要な損傷

下部構造の沈下に伴う伸縮装置での段差により、自転車やオートバイが転倒するなど道路 利用者等へ障害を及ぼす懸念がある状況などにおいては、緊急対応が妥当と判断できる場合 がある。

○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷

他部材との相対的な位置関係から下部構造が沈下・移動・傾斜していると予想されるもの の、目視でこれを確認できない状況などにおいては、詳細調査を実施することが妥当と判断 できる場合がある。

- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
支承, 下部構造	・路面の不陸による衝撃力の作用	・沈下、移動、傾斜による他の部材
	・側方流動	への拘束力の発生
	・流水による洗掘	
	・地盤の圧密沈下	
	・ 盛りこぼし橋台の盛土の変状	・盛りこぼし橋台基礎の支持力の
	・盛りこぼし橋台の盛土擁壁等の	低下
	移動・傾斜	

26 洗掘

【一般的性状・損傷の特徴】

基礎周辺の土砂が流水により洗い流され、消失している状態をいう。

【他の損傷との関係】

【対策区分判定】

- ○判定区分E1; 橋梁構造の安全性の観点から, 緊急対応が必要な損傷 フーチング下面まで洗掘され, 橋脚の沈下や傾斜が生じる危険性が高い状況などにおいて は, 緊急対応が妥当と判断できる場合がある。
- ○判定区分E2; その他, 緊急対応が必要な損傷
- ○判定区分S1, S2;詳細調査又は追跡調査が必要な損傷 過去の定期点検結果で洗掘が確認されており、常に水位が高く、目視では確認できない状 況などにおいては、詳細調査を実施することが妥当と判断できる場合がある。
- ○判定区分M;維持工事で対応が必要な損傷
- ○判定区分B, C1, C2;補修等が必要な損傷

損傷箇所	代表的な損傷原因の例	懸念される構造物への影響の例
基礎	・流水の変化・全体的な河床の低下	・洗掘が進展すると、下部構造に傾斜が生じる可能性がある。

3. 損傷の主な着目箇所

3.1 鋼橋

(1)一般的に生じやすい損傷など

鋼橋において特に損傷が発生しやすく、定期点検をする上で重点的に着目する必要がある箇所を、損傷種類ごとに下表に示す。

損傷種類	着目箇所
異常な音・振動, 異常なたわみ	桁支間中央,桁端部(伸縮装置,支承部)
塗膜劣化・皮膜劣化	桁全体,箱桁や鋼製橋脚内部
腐食	桁端部(支承廻り,桁端対傾構,横桁),継手部, 排水装置近傍,箱桁や鋼製橋脚内部,アーチやトラスの格点部(床版内に埋め込まれている内部),鋼アーチ橋のケーブル取付部,トラス斜材等のコンクリート埋込部,π型ラーメン橋取合い部(脚添接部,脚と梁の隅角部,梁隅角部),吊橋のケーブル定着部
ゆるみ・脱落	リベットや高力ボルトによる継手部
亀裂	ソールプレート前面溶接部,桁端切欠きR部, 対傾構取付き垂直補剛材溶接部, 主桁ウェブ面外ガセット溶接部, 主桁下フランジ突合せ溶接部, 横桁取付部, 鋼床版縦リブ溶接部,鋼床版縦リブ横リブ交差部, 主桁垂直補剛材ー鋼床版溶接部,縦桁端部切欠き部, アーチ垂直材根元部,鋼製橋脚沓座溶接部,鋼製橋脚隅角部 アーチやトラスの格点部(床版内に埋め込まれている内部)
変形・欠損(衝突痕)	車道直上部、アーチやトラスの格点部
漏水・滞水	桁端部,マンホール継手部,排水装置近傍,アーチやトラス の格点部

(2) 想定される損傷の状況(例)

① 腐食

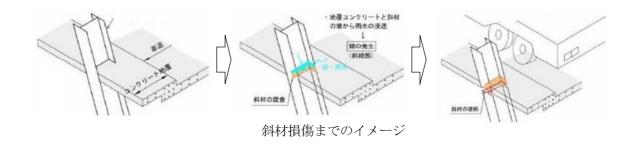
7) 桁端部

桁端部は湿気がこもりやすい箇所であり、伸縮装置からの漏水も生じやすいことから、 局部的に腐食が進行する場合があり、短期間でかなりの板厚減少に至った事例もある。

口) 継手部

主桁ウェブ及びフランジがシャープレート及びモーメントプレートでボルト接合された箇所であり、塗膜厚が薄くなる傾向や水はけが悪い状態となりやすいことから、局部的に腐食が進行する場合がある。

同様な環境の箇所として、アーチやトラスの格点部、鋼アーチ橋のケーブル取付部、 π型ラーメン橋取合い部(脚添接部、脚と梁の隅角部、梁隅角部)があげられる。


n) R C 床版等のコンクリート部材に埋め込まれた鋼製のトラス斜材等

主鋼の外側に歩道を有する構造において、コンクリート床版と斜材や垂直材の間に隙間がない場合には、土砂や水が溜まって腐食しやすいことに加え、変形を拘束するため、応力集中を起こして破断に至ることもある。

コンクリートに覆われていない外観目視できる部位の腐食や塗装の劣化の程度に比べて,コンクリート内部の方が腐食の進行が速く,著しい断面欠損や亀裂を生じている場合があるため,注意が必要である。

なお、コンクリート埋込部は鋼部材であるため、「埋込部から滲出している錆汁・漏水」は、「⑧漏水・遊離石灰」ではなく、「⑩漏水・滞水」(錆汁は⑰その他)として扱う。

また、箱抜き処理が行われている箇所は、コンクリート埋込部とは扱わない。

コ) 凍結防止剤による耐候性鋼材の異常腐食

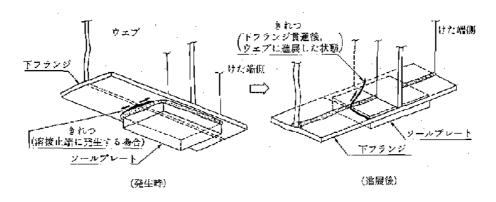
凍結防止剤を含む路面排水や床版排水が風などによって飛散し、桁に直接付着して異常腐食を生じる場合がある。排水管や床版の水抜きパイプの長さ不足によって発生した例がある。また、並列橋において、凍結防止剤のタイヤによる巻き上げにより異常腐食が生じた例がある。

ま) 鋼製パイルベント橋脚等の水中部(汽水域を含む)

没水部や飛沫部において、条件によっては鋼部材に著しい腐食が生じる場合がある。 防食が施されている鋼部材でも、防食の欠陥や船舶の接触等による損傷等に起因して局 部的に著しく腐食が進行し、孔食や断面欠損につながる場合がある。なお、海中部のみではなく、汽水域においても同様に注意が必要である。

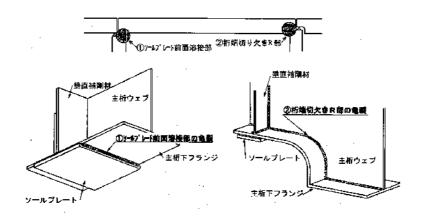
この他,「水中部の状態把握に関する参考資料(平成31年2月国土交通省道路局国道・技術課)」も参考にすること。

^) ケーブル及び吊材等


交通省道路局国道・技術課)」も参考にすること。

吊材やケーブル定着部などで、防食のためにカバー等で覆われている場合に、内部に 水が浸入して外観目視では見えない内部にて腐食が進行することがあり、注意が必要で ある。特に、さや管等で覆われていて異種金属接触腐食が生じている場合進行が速い。 この他、「引張材を有する道路橋の損傷例と定期点検に参考資料(平成31年2月国土

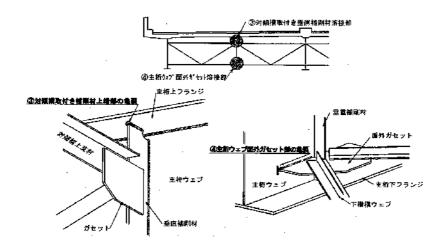
② 亀裂


() ソールプレート前面溶接部

支承周辺部の桁は、活荷重応力、温度変化による水平力など繰返し荷重を受ける範囲であり、特にソールプレート前面は支承機能の損傷により疲労亀裂の発生例は多い。

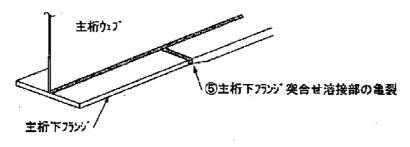
p) 桁端切欠きR部

桁端切欠き部 (ゲルバー部含む) は断面が急激に変化するため、応力集中しやすい。 円弧状に切欠いた形状の場合は、特にこのコーナー部に亀裂が生じやすい。



ハ) 対傾構取付き垂直補剛材溶接部

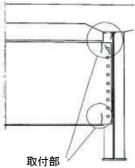
対傾構の取付き部は、主桁の相対たわみ差や床版のたわみなどにより交番応力が発生 し、疲労亀裂の発生例が多い部位である。


こ) 主桁ウェブ面外ガセット溶接部

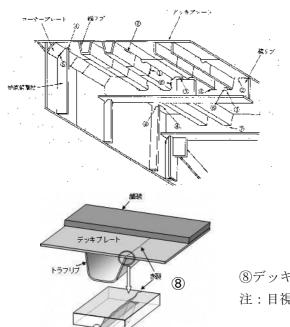
主桁ウェブに取り付けられた下横構の面外ガセットの端部に発生する亀裂は、主桁ウェブに進展し破断に至るおそれがあるため、注意が必要である。特に、疲労強度等級が低い貫通継手(H')についての注意が重要である。

お) 主桁下フランジ突合せ溶接部

亀裂の発生例としては希である。しかし、亀裂が発生した場合、落橋のおそれもある 部位であり、注意が必要である。


√) 桁端部の溶接部

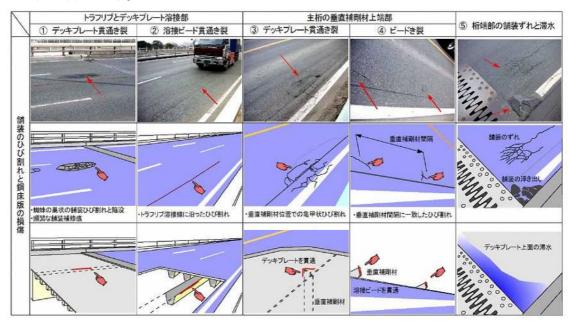
支点部である桁端部などで板厚減少を伴う腐食が生じると、部材の耐荷力に低下がみられ、疲労による場合と同様に、亀裂が発生することがあり、注意が必要である。


り 鈑桁の横桁取付部

横桁が荷重分配横桁である場合、主部材の接合部として耐荷力に影響を及ぼす箇所であり、注意が必要である。

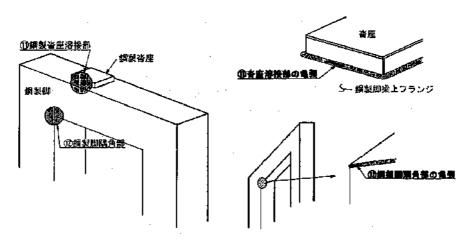
チ) 鋼床版部

鋼床版は活荷重が直接載荷される部位であり、疲労亀裂の発生事例は多い。構造形式 や寸法によるものの、一般的に発生例が多い部位を、下図に示す。

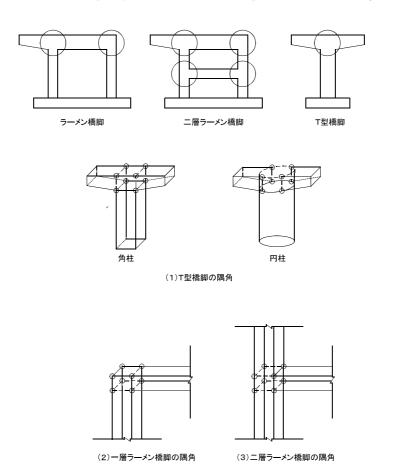

すみ肉溶接

- (1) 縦リブの現場契合せ溶接
- ② デッキプレートと凝りブのすみ肉溶接
- 第一デッキブレートと横サブのすみ函落接
- ④ デッキプレートと垂直補御材のする肉溶接
- ⑤ コーナープレートの溶接
- ⑥ 横りプと綴りプの交差部
- (*) 縦リブ端部の北森肉溶接

⑧デッキ貫通亀裂

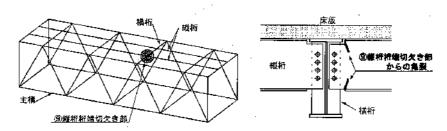

注:目視点検では発見は困難である。

鋼床版舗装は、デッキプレート上面に直接施工され一体化されているため、舗装の変状から鋼床版の交通荷重実態、鋼床版そのもののき裂等の異常の有無を推定することのできる様々な情報が得られる可能性が高い。特に、デッキプレート近傍に発生したき裂損傷に対しては、デッキプレートの挙動の変化や変形状態を反映して舗装のひびわれという形で路面に現れる場合が多い。舗装の劣化とその箇所で確認された鋼床板の損傷の例を下図に示す。

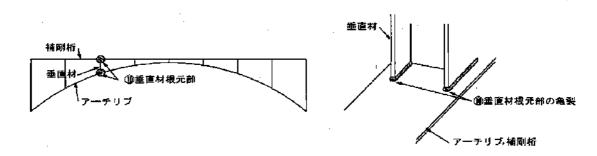


リ) 鋼製橋脚沓座溶接部,鋼製橋脚隅角部

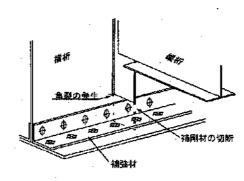
鋼製橋脚においては、鋼製の沓座溶接部や鋼製橋脚の隅角部に亀裂の発生した事例がある。



特に、隅角部においては下図の箇所や複数の溶接線が交差する部位、差し込み形式で鋼材を組み合わせた部位の溶接部に亀裂の発生した事例がある。(詳細は「鋼製橋脚隅角部の疲労損傷臨時点検要領(平成14年5月)」を参照するとよい。)


ヌ) 縦桁桁端切欠き部

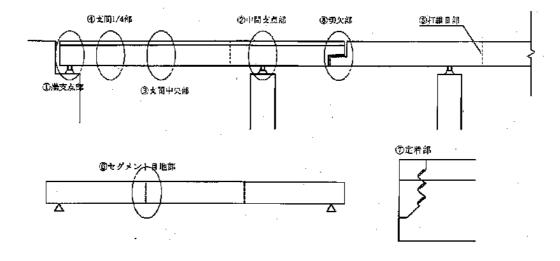
床組としての縦桁は桁端のフランジが切欠かれ、横桁などの補剛材に取り付けられる構造形式が多く、その切欠きから亀裂の生じることがある。アーチやトラス橋の床組構造に多く見られる。


ル) アーチ垂直材根元部

アーチの垂直材根元部は、補剛桁とアーチリブの水平変位差により2次曲げモーメントが生じ、その繰返しによる疲労亀裂が多く発見されている。特に中央付近の短い垂直材箇所に多く発生する。

ヲ) その他

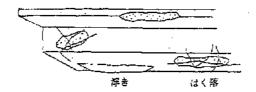
疲労損傷の多い橋梁としては、供用後 10 数年以上経過している、大型車交通量が多い、昭和 31 年又は 39 年道示で設計された溶接橋である等の特徴が挙げられる。これらの特徴を有する橋梁については、特に注意する必要がある。また、補修・補強箇所においては、補強部材などによって剛性が変化することにより、近接部位に新たな亀裂の発生する場合もある。構造ディテールの特異な補修・補強部位においても、注意が必要である。



3.2 コンクリート橋

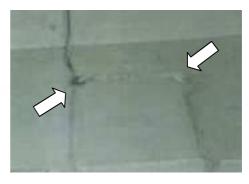
(1)一般的に生じやすい損傷など

コンクリート橋において発生しやすい損傷は、ひびわれと遊離石灰である。定期点検 をする上で特に重点的に着目する必要がある箇所を、下表に示す。

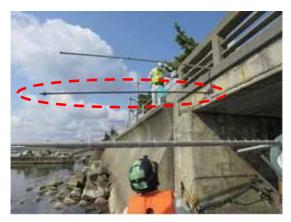

着目箇所	内容
①端支点部	支承反力、地震、温度変化による水平力、伸縮装置から
	の漏水等により損傷を受けやすい。
②中間支点部	中問支点部(連続桁)では、負の曲げモーメント及びせん
	断力が最大となり、かつ集中的な支点反力を受け応力状
	態が複雑となる部分であり、ひびわれが発生しやすい。
③支間中央部	曲げモーメントが極大となる部分であり、曲げびびわれ
	が発生しやすい。
④支間 1/4部	鉄筋の曲げ上げ点で鉄筋量が少なく、支承の作動不良等
	により思わぬひびわれが発生することがある。
⑤打継目部	乾燥収縮や施工不良によるひびわれ、剥離、うき、漏水
	が発生しやすい。
 ⑥セグメント目地部	セグメント施工の場合, 打継部と同様の損傷が発生しや
	すい。
(7)定着部	ウェブやフランジに突起を設けてPC鋼材を定着して
	いる部分では、引張応力の集中によるひびわれが発生し
	やすい。また、定着部は後打ちコンクリートで覆われて
	おり、打継部目地より雨水が浸透しやすく定着装置が腐
	食しやすい。
⑧切欠部	主桁断面が急激に変化する部分(ゲルバーヒンジ部や桁
	切欠部等)では、応力集中によるひびわれが発生しやす
	V >₀

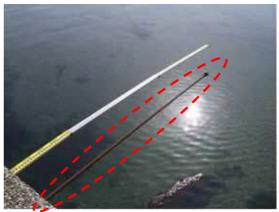
(2) 想定される損傷の状況(例)

① 塩害


桁の端部付近は、伸縮装置部分から雨水が浸透しやすく、飛来塩分量が多い場所や凍結 防止剤を散布する場所においては、コンクリートのひびわれ・うき・剥離落下が発生する ことがある。

② ゲルバー部


構造的に局部的な力が作用しやすい主桁隅角部(写真の矢印部)やヒンジ機能を失った支 承部付近は、ひびわれが発生しやすい位置である。狭隘であり、腐食環境としても局所的に 厳しい位置である。また、ゲルバー部の損傷は重大事故に繋がる可能性が高く、海外におい ては落橋事例もある。



③ P C 鋼材定着部 (床版横締め部)

PC鋼材により横締めを行っている橋では、横締め PC鋼材が破断・突出し、第三者被害を与える恐れがある。

3.3 コンクリート床版

(1)一般的に生じやすい損傷など

コンクリート床版において特に損傷が発生しやすく,定期点検をする上で重点的に着目する必要がある箇所を,損傷種類,補修工法ごとに下表に示す。

損傷種類	着目箇所
漏水及び遊離石灰	滞水環境下の床版,錆汁が認められる床版
MUM 0.0.424 f	輪荷重の通行軌跡にあたる床版,制動荷重の作用する端 部床版,貫通したひびわれが生じている床版 (漏水・遊 離石灰が生じている床版)
その他	鋼橋主桁端部の上フランジと床版界面の剥離(うき)

補修工法	着目箇所
連続繊維シート接着工法	繊維シートの剥離(うき),漏水,遊離石灰,錆汁
下面増厚工法	ひびわれ,漏水,遊離石灰,錆汁,剥離(うき)
鋼板接着工法	鋼板端部やボルトキャップ部の錆, うき, 漏水, 遊離石 灰, 錆汁
床版上面増厚工法	伸縮装置や地覆部近傍のうき、舗装面のひびわれ、ポットホール、床版下面の漏水・遊離石灰

(2) 想定される損傷の状況(例)

① 上面損傷

建設当初に床版の上面に乾燥収縮で発生したひびわれが、車両の通行による雨水のポンピング作用で増大し、上面鉄筋の発錆、コンクリートの土砂化に進展していく例がある。特に、床版防水が十分でない場合や凍結防止剤を散布する場合には、鉄筋の発錆が早いため、進展が早い。



② 貫通ひびわれの生じている床版

ひびわれの外観性状が同様であっても、貫通ひびわれや水分の供給があると損傷の進行速度が早くなるため、注意が必要である。ひびわれに漏水・遊離石灰を伴う場合、貫通ひびわれの発生及び路面からの雨水等の浸入が疑われる。

貫通ひびわれあり

③ 疲労以外の要因も疑われる床版ひびわれ

放射上に広がるひびわれや遊離石灰が広範囲に見られる場合には、疲労のみが要因ではない劣化が進行している可能性がある。この場合、コンクリート自体の劣化など床版の損傷の原因を把握し、材料劣化や床版全体のコンクリートの劣化の程度を考慮する必要がある。顕著なひびわれがない箇所でも遊離石灰が広範囲でみられることがある。

④ 補修補強した箇所の劣化

- ・過年度に下面に鋼板や炭素繊維シート・剥落防止材が設置されている既設橋では、床版内 部に水が浸入すると、急速に劣化が進行したり、劣化が広範囲にわたることがあるので注 意を要する。
- ・下面に鋼板や炭素繊維シート・剥落防止材が設置されている場合には、損傷等がすでに存在していた可能性があるので注意を要する。

3.4 下部構造

(1)一般的に生じやすい損傷など

下部構造において特に損傷が発生しやすく,定期点検をする上で重点的に着目する必要がある箇所を,下表に示す。(着目する損傷は,ひびわれと遊離石灰,洗掘,沈下・移動・傾斜)

部材種類	着目箇所
橋脚	天端,橋座周辺,隅角部,張出取付部,打継目, 断面変化位置,柱基部
橋台	天端,パラペット,躯体とフーチングの接合部, ウイング,打継目
基礎	フーチング下面,露出した基礎本体
水中部の部材(パイルベント)	水面付近及び没水部の柱部

(2) 想定される損傷の状況(例)

① 塩害

凍結防止剤を散布する場所においては、桁端部からの漏水によって沓座付近に滞水し、塩 分が徐々に蓄積し、コンクリートのひびわれ・錆汁が発生することがある。

②橋脚,橋台基礎の洗掘

橋脚,橋台において洗掘により沈下や傾斜が発生し,橋全体が歪むことで不安定な状態となり,通行止めすることがある。したがって,沈下や傾斜が生じる前に洗掘の状況を把握することが重要である。「水中部の状態把握に関する参考資料(平成31年2月国土交通省道路局国道・技術課)も参考にすること。

③パイルベント橋脚の腐食や座屈, ひび割れ

- ・3.1(2)①ホ)に注意するとおり、没水部や飛沫部において、鋼製のパイルベント橋脚に著しく腐食が生じる場合がある。
- ・また、コンクリートパイルベント橋脚においても、ひびわれ等により耐荷力が著しく低 下したと判断された例が見られているので注意を要する。
- ・洗掘の影響や地震の影響を受けやすいとされている。
- ・「水中部の状態把握に関する参考資料」(平成31年2月国土交通省道路局国道・技術課)も参考にすること。」

3.5 支承

(1)一般的に生じやすい損傷など

支承において特に損傷が発生しやすく, 定期点検をする上で重点的に着目する必要がある 箇所を, 支承の種類毎に下表に示す。

支承の種類	着目箇所と損傷
線支承	①下沓本体の割れ、腐食
	②サイドブロック立上り部の割れ
	③ピンチプレートの破損
	④上沓ストッパー部の破損
	⑤アンカーボルトの損傷,腐食
	⑥沓座モルタル、沓座コンクリートの損傷
ベアリング支承	①下沓本体の割れ、腐食
[*]	②ベアリングプレートの損傷(飛出し)
	③サイドブロック取付部の割れ
	④サイドブロックの接触損傷, サイドブロックボルトの破断
	⑤上沓ストッパー部の破損
	⑥セットボルトの破断
	⑦アンカーボルトの損傷(破断・抜出し),腐食
	⑧沓座モルタル、沓座コンクリートの損傷
複数ローラー支承	①上沓,下沓,底板の損傷,腐食
後数ローノー 又所	②ローラー部の損傷(ローラーの抜出し、ピニオンの破損)、
	腐食
	③サイドブロックの接触損傷、サイドブロックボルトの破断
	④下沓ストッパー部の破損
	⑤セットボルトの破断(鋼桁の場合)
	⑥ピン部又はピボット部の損傷
	⑦アンカーボルトの損傷(破断・抜出し),腐食
	⑧沓座モルタル、沓座コンクリートの損傷
	9保護カバーの破損
ゴム支承	①ゴム本体の損傷,劣化(有害な割れの有無)
	②ゴム本体の変位・逸脱(常時の許容せん断ひずみは 70%)
	③ゴムのはらみ等の異常の有無
	④ゴム本体と上沓との接触面に肌すきの有無
	⑤サイドブロックの損傷,サイドブロックボルトの破断
	⑥上沓ストッパー部の破損
	⑦セットボルトの破断
	⑧アンカーボルトの接触損傷(破断・抜出し),腐食
	⑨沓座モルタル、沓座コンクリートの損傷

(2) 想定される損傷の状況(例)

① ペンデル支承のアンカーボルトの腐食,破断

ペンデル支承の設置位置は、沓座を切り込んで設けられている場合が多く、土砂詰まりや滞水を生じやすく、腐食しやすい環境にある。

一方,ペンデル支承は少ないアンカーボルト本数に大きな上揚力が常に作用しており, アンカーボルトの腐食は破断につながりやすく,構造系の安定を脅かすことにもなる。

3.6 伸縮装置

伸縮装置において特に損傷が発生しやすく、定期点検をする上で重点的に着目する必要がある箇所を、伸縮装置の種類毎に下表に示す。

伸縮装置の種類	着目箇所と損傷
埋設ジョイント	①シール材の脱落 ②埋設舗装材のひびわれ,角欠け,剥離(うき) ③漏水
突き合わせジョイ ント	①シール材の脱落,ゴムの切断,うき上がり ②コーナーチャンネル等の変形,ゴム材との剥離(うき) ③アンカー材,アンカー部の破損,床版端部の破損 ④土砂の侵入
	⑤後打ち材の角欠け、陥没、舗装との剥離(うき)、ひびわれ、摩耗 ⑥後打ち材と舗装との段差、伸縮装置前後の段差
荷重支持型ゴムジ ョイント	①フェースゴムの摩耗,さく裂,劣化,剥離(うき) ②取り付けボルトのゆるみ,損失 ③アンカー材,アンカー部の破損,床版端部の破損
	④後打ち材の角欠け,陥没,舗装との剥離(うき),ひびわれ,摩耗 ⑤後打ち材と舗装との段差,伸縮装置前後の段差 ⑥周辺舗装のひびわれ,陥没,剥離(うき)
	⑦ゴムと鋼材,鋼材と鋼材の間にできた隙間から発生する車両通過時 の騒音 ⑧段差による車両通過時の騒音
	②アンカーボルトの取り付け不良、ゆるみによる車両通過時の騒音
鋼製フィンガージョイント	①フェースプレートの破断、破損 ②フェースプレートとウェブとの取り付け溶接部の破断、それによる フェースプレートのはがれ、うき、ウェブのわれ、またそれらによ
	る車両通過時の騒音・金属音 ③アンカー部の取り付け溶接部の破断などによるアンカーの離れ ④鋼材やアンカーの腐食
	⑤高力ボルトのゆるみ・破断・それによる車両通過時の騒音・金属音 ⑥後打ち材や周辺舗装の角欠け、陥没、ひびわれ、摩耗、盛り上がり ⑦後打ち材や周辺舗装とフェースプレートとの段差、後打ち材と周辺 舗装との段差
	⑧アンカー部コンクリートのひびわれ、破損⑨前後のフェースプレート間の段差、それによる車両通過時の騒音⑩フェースプレートが離れすぎてフィンガーの歯がかみ合っていない、非排水シール材の離れ、引きちぎれ、排水樋が水の落ちる位置
	とかみ合わない、それらによる漏水 ①フェースプレートが接触し、桁の伸びを阻害する ②フィンガーの歯が横方向に接触 ③排水樋の土砂の堆積や腐食による漏水

3.7 高欄·地覆

高欄・地覆において特に損傷が発生しやすく、定期点検をする上で重点的に着目する必要がある箇所を、高欄・地覆の種類毎に下表に示す。

高欄・地覆の種類	着目箇所と損傷
	①表面,水切り部のかぶりコンクリートの剥離(うき),剥落②付帯設備の異常振動等による取り合い部の損傷
	①支柱取り付け部、レール連結部の腐食 ②付帯設備の異常振動等による取り合い部の損傷

3.8 排水施設

排水施設において特に損傷が発生しやすく,定期点検をする上で重点的に着目する必要がある箇所を,排水施設の部位別に下表に示す。

排水施設の部位	着目箇所と損傷
排水ます、蓋	蓋 のはずれ、破損、損傷による車両通行時の打撃音、土砂詰まり
排水管	ジョイント付近の破損・はずれ、鋼管の溶接われ
取付金具	排水管や取付部材からのはずれ

3.9 落橋防止システム

落橋防止システムにおいて特に損傷が発生しやすく、定期点検をする上で重点的に着目する必要がある箇所を、落橋防止システムの種類別に下表に示す。

落橋防止システムの種類	着目箇所と損傷
鋼製ストッパー	鋼材の腐食・ボルト及びアンカーボルトのゆるみと欠損
コンクリートストッパー	コンクリートのひびわれ(特に基部),剥離(うき),鉄筋 露出
PC連結タイプ	P C ケーブルの腐食, アンカーボルトのゆるみ, ボルトのゆるみ, 鋼材の腐食
チェーン連結タイプ	チェーン被覆の腐食、アンカーボルトのゆるみ、ボルトの
緩衝ゴム	ゆるみ、鋼材の腐食
鋼製ブラケット等	鋼材の腐食,アンカーボルトのゆるみ
コンクリートブロック等	コンクリートのひびわれ、剥離(うき)、鉄筋露出
ジョイントプロテクター	ジョイントプロテクターの破損

3.10 引張り材全般

道路橋の中には、引張材に破断等が生じることで、橋全体が致命的な状態に至る可能性や橋全体の挙動に大きな影響を与えることが懸念されるものがある。たとえば、以下の部材を有する橋はこれに該当すると考えてよい。

- 1) 引張材:ケーブル、吊り材、ペンデル支承、グラウンドアンカー等
- 2) 1) の定着部(引張材を定着するための定着具及び定着具を配置するための補強された部位)
- 3) 1), 2)の挙動に影響を与える部材

これらについて、定期点検をするうえで重点的に着目する必要がある箇所については、「引張材を有する道路橋の損傷例と定期点検に関する参考資料」(平成 31 年 2 月国土交通省道路局国道・技術課)を参考にするとよい。