Ⅱ 水質試験概要

1	主要項目の水質試験結果・・・	•••••	$\Pi - 1$
2	浄化センター処理状況		
	(1) 新町浄化センター ・・		П− 2
	(2) 日明浄化センター ・・		∏ − 4
	(3) 曽根浄化センター ・・		П- 6
	(4)北湊浄化センター ・・		Π− 8
	(5)皇后崎浄化センター タ	第一処理施設 ·····	П−10
		第二処理施設 ·····	
3	試験実施要領 · · · · · · · · · · · · · · · · · · ·		∏-14
4	試験成績等の記載方法 ・・・・		∏-14
5	試験方法及び試験成績表示方	法	∐ −15
6	排水基準 ·····		П−18
7	,		-
8	管理指標		П−23

1 主要項目の水質試験結果

(年平均值)

項		目	試 料	新町	日 明	曽 根	北湊	皇后崎第 一	皇后崎第二
S		S	処理場流入水 初 沈 流 入 水 初 沈 流 出 水 放 流 水	163 136 42 2	144 171 33 1	228 145 33 1	138 131 38 2	171 63 22 1	160 183 25 1
В	O	D	処理場流入水 初 沈 流 入 水 初 沈 流 出 水 放 流 水	130 140 69 1.8	110 120 56 2.0	160 130 64 1.2	110 110 63 1.1	120 62 51 <1.0	120 130 59 <1.0
С	O	D	処理場流入水 初 沈 流 入 水 初 沈 流 出 水 放 流 水	89 100 44 8. 3	76 78 35 6.8	120 91 43 7.3	77 66 39 7. 7	84 38 31 5. 7	79 87 36 6. 7
全	窒	素	処理場流入水 初 沈 流 入 水 初 沈 流 出 水 放 流 水	29 30 19 7. 0	26 29 18 12	33 31 20 10	26 24 18 9.0	28 17 14 8.8	25 27 17 10
全	ij	h	処理場流入水 初 沈 流 入 水 初 沈 流 出 水 放 流 水	3. 1 3. 5 2. 2 0. 24	2.9 4.2 2.2 0.80	3.7 3.6 1.9 0.13	2.7 2.6 1.7 0.32	2.9 1.8 1.5 0.22	2.8 3.3 1.8 0.18

[※] 単位:mg/L

[※] 皇后崎第一の処理場流入水は藤田ポンプ場で採取したもの。

2 浄化センター処理状況

(1) 新町浄化センター

ア 水処理関係

(7) 処理場流入水

本年度の処理場流入水の水質は、昨年度と比較して SS は増加し、BOD、COD、全窒素、全りんはほぼ同程度であった。過去 5 年間の変化を見ると、SS、BOD、COD は減少し、その他の項目は概ね横ばいである(図-1)。

(イ) 初沈流出水

初沈流出水の水質は、昨年度と比較して BOD、COD はやや減少、SS、全窒素、全りんは、ほぼ同程度であった。過去 5 年間の変化を見ると、SS 等 5 項目とも概ね横ばいである(図-2)。

(ウ) 放流水

放流水の水質は、水質基準を満足していた。

昨年度大幅に上昇していた全りんは、本年度は例年並みの値に戻った。他の項目は全窒素がや や昨年度より低下したが、それ以外は概ね横ばいである(図-3)。

(エ) 処理水

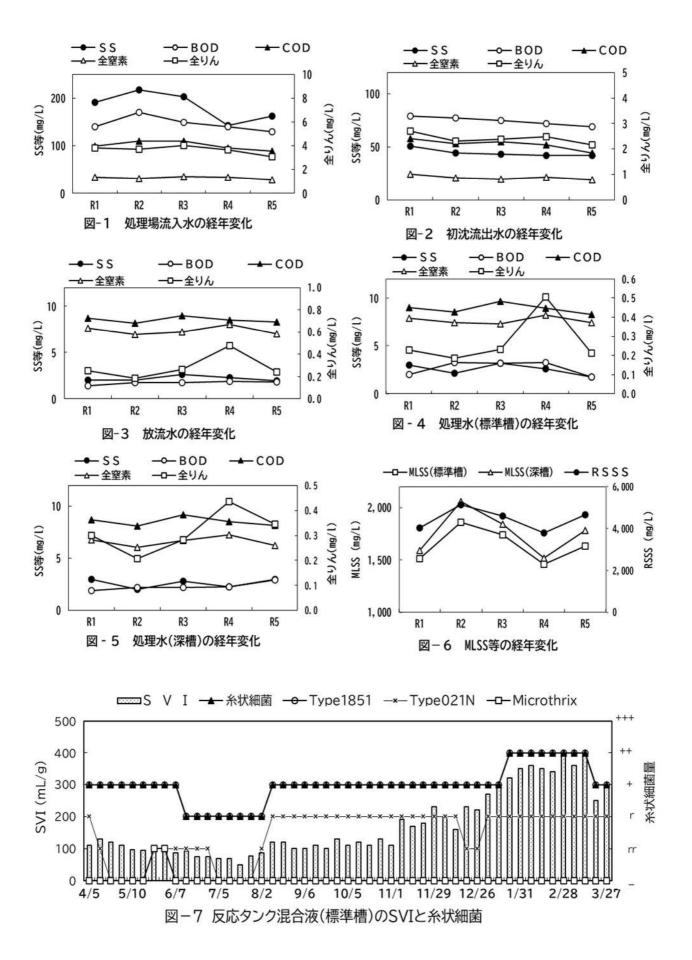
処理水の水質は、昨年度処理悪化のため上昇していた全りんは本年度は低下した。標準槽は、 例年並みの値であるが、深槽は、過去5年平均と比べるとやや高い値であった。その他の項目に ついては全窒素がやや低下したが、それ以外はおおむね横ばいである。(図-4、5)

(オ) 反応タンク混合液及び生物相

MLSS は標準槽 1,630mg/L、深槽 1,780mg/L と昨年度に比べ標準槽、深槽ともに増加し、過去 5年平均並みであった。(図-6)。

SV は標準槽 30%、深槽 36%と昨年度より増加し、SVI についても標準槽 170mL/g、深槽 180mL/g と、昨年度と比べ増加し、過去5年間で最も高い値となった。

生物相は、IV群の Vorticella (ボルティセラ)、Epistylis (エピスティリス) 等、Aspidisca (アスピディスカ)、V群の Arcella (アルセラ)、Coleps (コレプス) 等が優占的に出現し、IV群、V群主体の生物相であった。


糸状細菌は、年間を通して(r)から(++)で推移した。バルキングの原因となりやすい Type021Nは、(rr)から(r)であった。(図-7)

イ 汚泥処理関係

固形分の平均値は、初沈引抜汚泥が 0.4%、重力濃縮汚泥が 2.9%及び混合汚泥が 0.9%と、過去 5年間と比べて大きな変化はなく、脱水ケーキについては汚泥処理施設の受入に合わせた処理目標値(28±2%)内の 27.46%であった。

ウ 工事・その他

場所	内容	期間
2系曝気槽	2系終沈工事に伴い休止	R5. 9. 19~R6. 3. 18
2系終沈	工事のため休止	R5.10.19~
3系終沈	2系終沈工事に伴う事前調査等のため休止	R5. 9. 12~R5. 10. 19

(2) 日明浄化センター

ア 水処理関係

(7) 処理場流入水

処理場流入水の水質は、昨年度と比較し、いずれの項目も低下した。平成 30 年度以降の変化 を見ると、SS、BOD は年度間で変動はあるものの、その他の項目(COD、全窒素、全りん)は概ね 横ばいで推移している(図-1)。

(1) 初沈流出水

初沈流出水の水質は、SS が昨年度より上昇し、COD、全窒素、全りんが低下した。平成 30 年度 以降の変化を見ると、全りんは年度間で変動はあるものの低下傾向にあり、その他の項目は概ね 横ばいで推移している(図-2)。

(ウ) 放流水

放流水の水質は、COD、全りんが低下し、その他の項目は昨年度と同程度であった。平成30年度以降の変化を見ると、年度間で変動はあるものの、全ての項目が概ね横ばいで推移している(図 - 3)。

(エ) 処理水

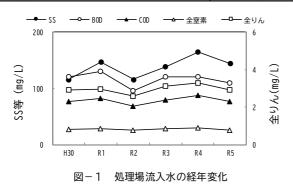
処理水の水質は、標準槽では BOD、COD、全窒素、全りんが昨年度より低下し、深槽ではいずれの項目も低下した。平成 30 年度以降の変化を見ると、年度間で変動はあるものの、標準槽、深槽ともに概ね横ばいで推移している(図 — 4 、5)。

(オ) 反応タンク混合液及び生物相

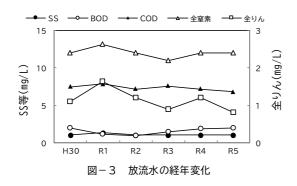
MLSS は標準槽 1,330mg/L、深槽 1,500mg/L、RSSS は 4,110mg/L であり、昨年度とほぼ同程度であった。7 月に降雨の影響で MLSS が標準槽で 490mg/L、深槽で 800mg/L まで低下した。一方で、10 月以降は管渠更生工事の影響等で MLSS が上昇し、1 月まで高めの状況が続いた。平成 30 年度以降の MLSS の変化を見ると、概ね横ばいで推移している(図-6)。汚泥の沈降性を示す SVI は、標準槽 270mL/g、深槽 260mL/g であり、昨年度と比較し、やや高めに推移した(図-7)。

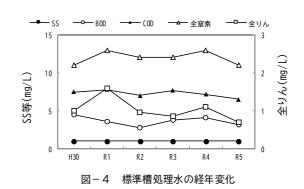
生物相は、春季はIV群の Vorticella (ボルティセラ)等の縁毛類やV群の Amoeba (アメーバ)等の肉質虫類が多く出現したが、その後夏季から冬季にかけて縁毛類や Aspidisca (アスピディスカ)等のIV群が優占した。春季には、再びV群の肉質虫類が多く出現するなど、年度を通して概ねIV群・V群主体の生物相であった。

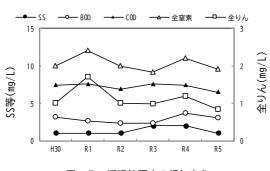
糸状細菌は全体で(+)~(+++)で出現し、Type1851 が主体であった。バルキングの原因となる Type021N は、年度を通して(rr)~(+)出現した。また、低水温期にバルキングを起こしやすい Microthrix (ミクロスリックス) は、12 月下旬から 3 月中旬に(rr)~(++)程度出現し、SVI は最大で 410mL/g まで上昇した。

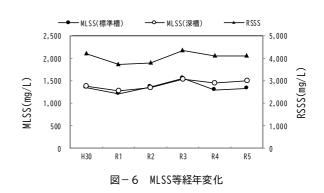

イ 汚泥処理関係

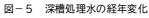
汚泥は、年度を通して概ね安定して処理されていた。今年度は汚泥の腐敗対策として、6 月から 12 月にかけて重力濃縮槽の 1 槽運用を行った。そのため、固形物負荷が高めとなったが、安定して稼働し、汚泥の循環も見られなかった。初沈引抜汚泥の固形分は、平均値で 0.5%、重力濃縮汚泥の固形分は、平均値でNo.1 が 3.9%、No.2 が 3.4%となり、いずれも昨年度と同程度であった。また、消化ガス発生量も、12~21 倍と昨年度と同程度であった。


脱水ケーキ固形分の平均値は、No.3 が 21.65%、No.4 が 21.94%、No.5 が 22.48%と昨年度からやや 上昇したが、過去5年間では大きな変化は見られない。


ウ 工事・その他


場所	内容	期間
西港遮集幹線管渠更生工事	夜間送水停止・低水位運転	R5.8.17~12.2
日明遮集増補幹線伏越人孔浚渫	夜間送水停止・低水位運転	R6.2.9~2.16
し尿直接試験	2系消化層を経由せず、場内排水管へ投入	R5.11.6∼
最初沈殿池1系	合流改善事業による高速ろ過池改造	R4.2.8~R6.3.15
最初沈殿池2系	合流改善事業による高速ろ過池改造	R4.2.15~R6.3.15
最初沈殿池3系	耐震調査のため停止	R5.7.21~8.9
遠心脱水機No.4	定期修繕	R5.11.16~R6.2.29
重力濃縮槽	污泥界而管理(腐敗防止) 1槽運用	R5. 6. $13 \sim 12.4$




100 (1/6m) が (1/6m

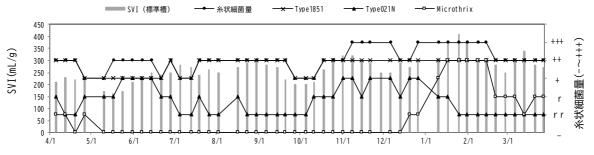


図-7 反応タンク混合液(標準槽) のSVIと糸状細菌

(3) 曽根浄化センター

ア 水処理関係

(7) 処理場流入水

処理場流入水の水質は、BOD が昨年度と同程度の値であったが、COD は前年度より上昇し、全 窒素は前年度より低下している。SS は令和 2 年度より上昇傾向にあり、全りんは令和 3 年度以降 低下傾向にある(図 - 1)。

(1) 初沈流出水

初沈流出水の水質は、SS については昨年度と同程度であるが、その他の項目は昨年度より低下している(図-2)。

(ウ) 放流水

放流水の水質は、年間を通じ排水基準を満足していた。

全りんは、令和 2 年度に大きく上昇していたが、その後は昨年度にかけて低下し、今年度は、 昨年度と同程度である。その他の項目は、ほぼ横ばいで推移している(図-3)。

(エ) 処理水

全窒素は、すべての系で昨年度より低下している (図-4)。

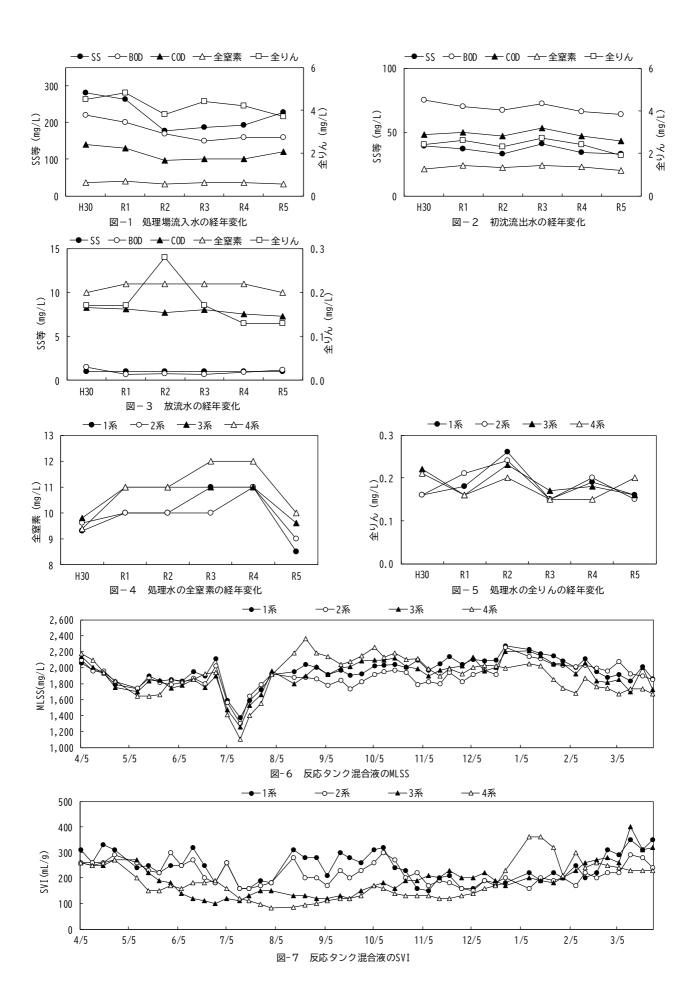
全りんは、 $1\sim3$ 系では昨年度より低下しているが、4 系では上昇している。(図-5)。6 月下旬から 7 月上旬にかけての大量の降雨により、各系の全りんが 1 mg/L を超過したが、C 値 (2 mg/L) を超過することはなく、その後、速やかに低下した。

(オ) 反応タンク混合液及び生物相

MLSS は、年間平均値が 1 系で 1,960 mg/L、2 系で 1,890 mg/L、3 系で 1,910 mg/L、4 系で 1,900 mg/L であり、昨年度とほぼ同程度であった。7 月は降雨が多く、7 月 13 日の採水時には、MLSS が 1,100~1,370 mg/L まで低下したが、その後は速やかに回復した。

反応タンクの SVI は平均で、1 系 240 mL/g、2 系 220 mL/g、3 系 190 mL/g、4 系 180 mL/g であった。年度当初は各系とも 300 mL/g 程度と高い値であったが、8 月頃にかけて徐々に低下し、年度末に向けて再び 300 mL/g 程度まで上昇した。4 系では、1 月頃に 360 mL/g まで上昇したため、余剰汚泥引抜量を増やしたところ、徐々に低下した。

生物は、N群の Epistylis(エピスティリス)等の縁毛類、V群の Arcella(アルセラ)等の有殻アメーバが優占的に出現し、IV、V群主体の生物相であった。糸状細菌は全系列で(+)~(++)で出現し、Type1851 が主体であった。


イ 汚泥処理関係

初沈引抜汚泥の固形分は、平均値で 1.2%であり、昨年度と同程度となっている。2 系重力濃縮槽の搔寄機が故障したため、1月5日より1系に切り替えた。

脱水ケーキ固形分の平均値は、No.2 で 27.61% (24.87%~29.49%)、No.3 で 28.46% (25.17%~31.57%) であった。No.2 脱水機の定期修繕が長期化し、令和 6 年度に再稼働の予定である。

ウ その他

場所	内容	期間
4系最終沈殿池	停止(返送汚泥ポンプ制御基板故障)	R04.12.14 ∼
反応タンク	省エネ運転(4 号ブロワ単体運転:14h)	R05.03.13 ∼
2系重力濃縮槽	停止(覆蓋架台脱落による故障)	R06.01.05 ∼
No.2 脱水機	停止(定期修繕)	R06.01.25 ∼

(4) 北湊浄化センター

ア 水処理関係

(ア) 処理場流入水

処理場流入水の平均水質は、昨年度と比較し、SS、 BOD、COD が上昇した。令和 4 年 8 月から流入渠低水位運転(9 時~17 時、水位 lm 以下)を実施し、これまで流入渠に堆積していた汚泥が、低水位により流速が早くなり、堆積せずに流れ込んでくるようになったことが影響していると考えられる。全窒素、全りんは同程度だった(図-1)。

(イ) 初沈流出水

初沈流出水の平均水質は、昨年度と比較し、COD、全りんはわずかに低下し、SS、BOD、全窒素は同程度であった(図-2)。

(ウ) 放流水

放流水の平均水質は、昨年度と比較し、SS は同程度で、BOD、COD、全窒素はわずかに低下した。また、全りんはやや上昇した(図-3)。

(エ) 処理水

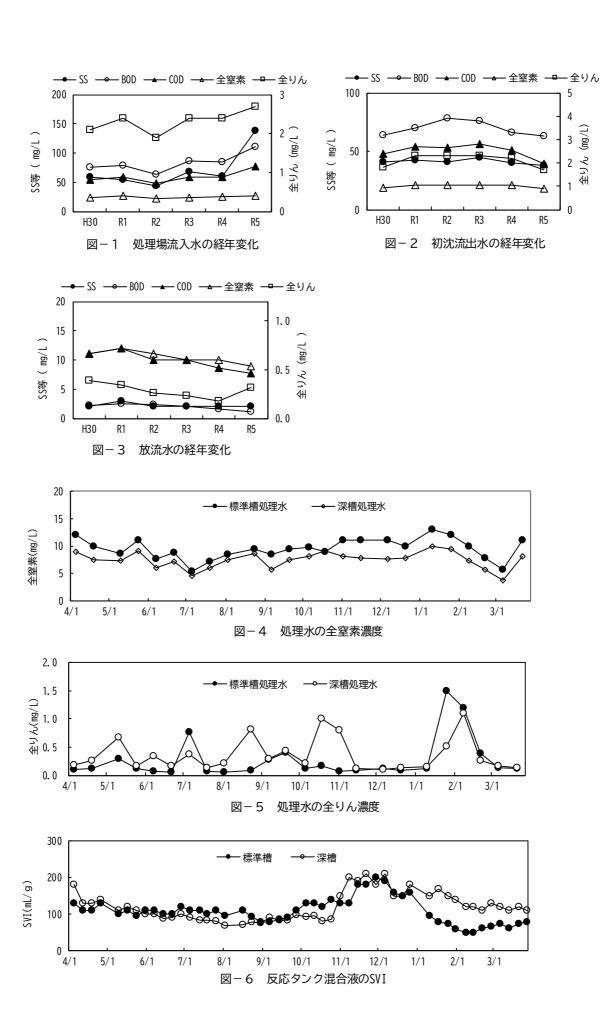
全窒素の平均水質は、標準槽は 9.5 mg/L、深槽は 7.5 mg/L で昨年度と比較しやや低下した。また、降雨の影響により一時的に低下することがあった(図-4)。

全りんの平均水質は、標準槽は 0.28mg/L、深槽は 0.37mg/L で昨年度と比較しやや上昇した。10月に深槽で一時的に全りんが上昇した。りんの取り込みが不十分で、また終沈で吐き出しが起こっている可能性が考えられた。1月から 2月の上旬にかけて降雨及び管渠更生工事に伴う流入水量の増加が影響し、全りんが上昇した。(図-5)。

(オ) 反応タンク混合液及び生物相

MLSS は年平均で標準槽 2,010mg/L、深槽 2,050mg/L で、過去 5 年間の変化を見ると令和 4 年度から 2,000mg/L を超え、高めで推移している。

反応タンクの SVI は年平均で、標準槽 110mL/g、深槽 120mL/g で、年間の変動を見ると 11 月~12 月にやや高くなった(図-6)。


生物相は標準槽で1月下旬から2月中旬にかけてV群のLepadella等が増加し、フロックが小さく団子状になり糸状細菌が減少した。糸状細菌は6月から10月にかけて全体及びType1851が(r)と少ない状況が続いた。年間を通じてType021Nは(rr)となることが多かったが、3月に(+)となった。12月には標準槽、深槽ともに僅かだが放線菌が確認された。標準槽の一部で発泡及び返送ピットでスカムが発生したが1月中旬にはおさまった。

イ 汚泥処理関係

7月の豪雨により、高須ポンプ場から払川ポンプ場の間で圧送管トラブルが発生し、復旧が完了するまでの間、高須ポンプ場からの送水を全量折尾ポンプ場へ切り替え、皇后崎浄化センターへ送水した。これにより、(1)生活排水由来の汚水が減少し、脱水に有効な繊維状物が不足したこと、(2)初沈汚泥の排泥弁が 1 箇所故障しており、池底に滞留していた汚泥が夏期の水温上昇により腐敗したことなどから、8 月中旬に脱水性が悪化し、脱水ケーキの固形分が処理目標値(28±2%)を満たさないことがあった。

ウ その他

場所	内容	期間
高須-払川ポンプ場間 圧送管	管渠更生工事(豪雨による破損)	R5.7.3~R5.12.12
最初沈殿池 4 系	休止(流入水量減少に伴う対応)	R5.10.22~R5.12.21

(5) 皇后崎浄化センター第一処理施設

ア 水処理関係

(7) 処理場流入水

処理場流入水の水質を昨年度と比較すると全窒素及び全りんが低下している。平成30年度以降の変化を見ると、年度毎の増減はあるがSSは僅かに上昇傾向で、その他の項目は概ね横ばいである(図-1)。

(イ) 初沈流出水

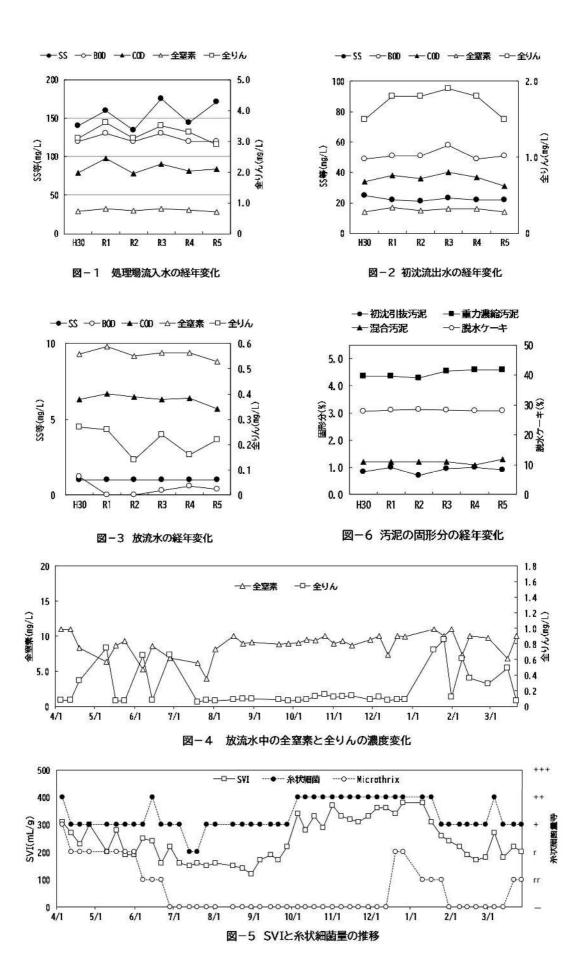
初沈流出水の水質は、昨年度と比較すると COD、全窒素及び全りんが低下した。平成 30 年度以降の変化を見ると、BOD、COD、全窒素及び全りんが令和 3 年度まで上昇傾向にあったが、その後は低下傾向にある。SS は、若干低下傾向で推移している(図 - 2)。

(ウ) 放流水

放流水の水質は、昨年度と比較すると BOD、COD 及び全窒素が低下した。その他の項目については、SS は昨年度と同程度であったが、全りんは上昇した。平成 30 年度以降の変化を見ると、COD、全窒素及び全りんが低下傾向にあり、SS 及び BOD は低濃度の水準で概ね横ばいである。(図-3)。また、全りんは令和 2 年度に低かったが、これは第二処理場工事の対応として第 1 ポンプ場から第一処理場への送水量を増やしたことが反応タンクへの有機物供給増につながり、りん処理に影響したものと考えられる。図-4 に本年度の全窒素及び全りんの濃度変化を示す。5~6 月及び 1~3 月に全りんが上昇することがあったが、採水数日前の 10mm/日程度以上の降雨による影響と考えられる。

(エ) 反応タンク混合液及び生物相

MLSS の年間平均値は 1,490mg/L であり、昨年度よりやや高かった (昨年度 1,450mg/L)。 SV、SVI は、それぞれ 38%、240 mL/g であり、昨年度 (SV:31%、SVI:200mL/g) より高かった。図-5に SVI と糸状細菌量の推移を示した。本年度は、Microthrix(ミクロスリックス)が $4\sim5$ 月及び 12 月に発生した。SVI は 12 月末 \sim 1 月上旬に最も高い 380mL/g となった。


生物は、Epistylis(エピスティリス)等、Aspidisca(アスピディスカ)、Arcella(アルセラ)、Vorticella(ボルティセラ)、Coleps(コレプス)等、Amoeba(アメーバ)等及び Euglypha(ユーグリファ)等が概ね年間を通じて出現した。

イ 汚泥処理関係

初沈引抜汚泥の固形分は、第一処理施設系統の No.1 が 0.4%、第二処理施設系統の No.2 が 1.4%であり、両者の平均値 (0.9%) は昨年度 (1.0%) と同程度であった。重力濃縮汚泥の固形分は 4.6%であった (昨年度:4.6%)。脱水ケーキの固形分は 28.09%となり、昨年度の 28.08%と同程度であった (図-6)。 なお、1月31日及び2月28日に採取した混合汚泥は、通常より固形分が高く、有機分が低かったが、砂状粒子が混入したことが原因と考えられる。

ウエ事、その他

場所	内 容	期間
2-1 系最終沈殿池	停止(掻寄機更新)	R5.9.22~年度中継続
最初沈殿池 No.4	停止(スカム引抜弁修繕)	R5.10.25~R5.11.10
2-2 系最終沈殿池	停止(槽内点検)	R6. 2. 2~R6. 2.19

(6) 皇后崎浄化センター第二処理施設

ア 水処理関係

(7) 処理場流入水

処理場流入水の水質について昨年度と比較すると、SS、BOD、COD、全窒素及び全りんともに低下した。平成30年度以降の変化を見ると、SS及び全りんについては比較的年度間の変動が大きいが、その他の項目は若干低下傾向で推移している。(図-1)。

(イ) 初沈流出水

初沈流出水の水質について昨年度と比較すると、SS、COD、全窒素及び全りんは低下し、BOD は僅かに上昇した。平成30年度以降の変化を見ると、年度毎の増減はあるがSS、BOD、COD、全窒素及び全りんともに概ね横ばいで推移している(図-2)。

(ウ) 放流水

放流水の水質は、昨年度と比較すると SS、BOD、COD、全窒素及び全りんともに低下した。 平成 30 年度以降の変化を見ると、全りんに比較的大きい年度変動が見られるが、SS、BOD、COD、全窒素及び全りんともに概ね横ばいで推移している。(図-3)。各系の処理水中の全りんの変化(図-4)をみると、2系及び3系は比較的安定的に推移したが、1系では顕著にまとまった降雨後の上昇が見られた。放流水中の全窒素及び全りんの濃度変化(図-5)をみると、全りんは例年より安定的に推移し、5月及び12~2月にまとまった降雨後に上昇する日が見られたが、窒素処理は比較的安定していた。

(エ) 反応タンク混合液及び生物相

MLSS の年間平均値は 1 系 : 1,610、2 系 : 1,540、3 系 : 1,460mg/L であった(図-6)。 平成 30 年以降年間平均値はやや増加傾向にあったが、近年は各系とも若干減少している。 SVI の年間平均値は 1 系 : 190、2 系 : 130、3 系 : 190mL/g となった(図-7。昨年度 1 系 : 140、2 系 : 150、3 系 : 190mL/g)。令和 3 年度は Microthrix 及び Type021N がそれぞれ最大で(+++)及び(++)観察されたが、本年度は令和 4 年度と同様に、いずれも(r)観察されるにとどまった。

生物は *Epistylis* (エピスティリス) 等、*Aspidisca* (アスピディスカ)、*Amoeba* (アメーバ) 等、*Vorticella* (ボルティセラ) 等、*Arcella* (アルセラ) 等が概ね年間を通じて出現した。

イ 汚泥処理関係

皇后崎浄化センター第一処理施設に同じである。

ウエ事、その他

北湊処理区域における高須-払川ポンプ場の圧送管トラブルのため、7月上旬から 12 月上旬の間、折尾ポンプ場経由で当該処理施設への送水が行われた。

場所	内 容	期間
3系最初沈殿池	廃止(水処理設備工事)	R4. 8.22~R6. 3.11
1-3 系最終沈殿池	停止(故障:掻寄機)	R5. 8.21~R5.12.25
1-1 系最初沈殿池	停止(簡易放流可動堰設置工事)	R5.11. 7~R5.12.20
高速ろ過設備	運用開始(水処理設備工事)	R6. 3.11∼

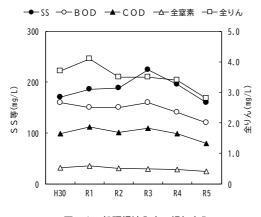


図-1 処理場流入水の経年変化

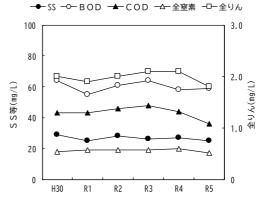


図-2 初沈流出水の経年変化

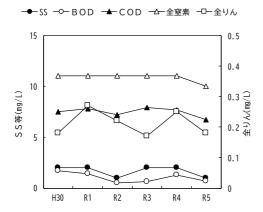


図-3 放流水の経年変化

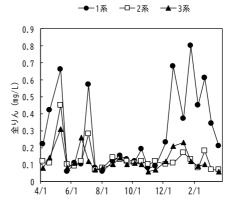


図-4 処理水中の全りん濃度変化

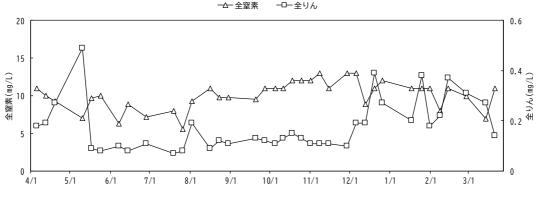
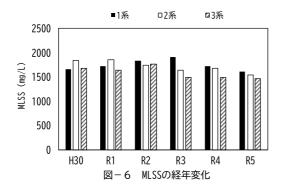
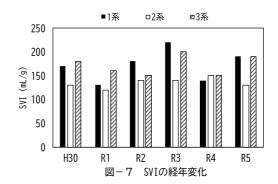




図-5 放流水中の全窒素と全りんの濃度変化

3 試験実施要領

浄化センターにおける採水は、原則として 1 週間のうちで最も水質が安定しているといわれる 水曜日の午前中に行っている。汚泥試料の採取もこれに準じた。主な試験の種類を以下に示す。

(1) 下水試験

- ア 処理場定常試験:最初沈殿池流出水、反応タンク混合液、返送汚泥、処理水及び放流水を 試料として月1回行う。ただし、全項目試験時は処理場流入水を採取する。
- イ 処理場精密試験:処理場流入水、最初沈殿池流入水、最初沈殿池流出水、反応タンク混合 液、返送汚泥、処理水及び放流水を試料として月1回行う。
- ウ 全項目・重金属試験:処理場流入水、放流水を試料として6ヶ月に1回行う。
- エ 放流水・反応タンク試験:上記ア及びイの試験を実施しない週に、放流水、反応タンク混 合液及び返送汚泥を試料として行う。

(2) 汚泥試験

- ア 脱水ケーキ試験:脱水ケーキを試料として毎週行う。
- イ 固形分試験:最初沈殿池引抜汚泥、重力濃縮汚泥、余剰濃縮汚泥、混合汚泥、脱水機供給 汚泥、消化汚泥及び投入し尿を試料として月1回行う。
- ウ 汚泥精密試験: 固形分試験に重力濃縮越流水、余剰濃縮分離液及び脱水分離液を加えた試料として月1回行う。
- エ 脱水ケーキ含有量試験:脱水ケーキの含有量試験を6ヶ月に1回、ウと同時に行う。
- (3) 消化ガス試験

脱硫前後の消化ガスを試料として3ヶ月に1回行う。

(4) 事業場排水

事業場排水試験は原則として外部委託であるが、揮発性有機物質(ジクロロメタン等)、有害 金属類の一部については、水質管理課で行う。

(5) その他

下水道の工事に係わる試験、下水道の維持管理に必要な試験及び調査研究等を行う。

4 試験成績等の記載方法

試験成績及び処理状況等の記載にあたっては、次の基準に従った。

- (1) 定量下限値は、試験の目的と数値の必要性を考慮して定めるものとする。定量下限値に満たないものは" < (定量下限値)"として示す。
- (2) 表示桁数は、試験の精度と数値の必要性に基づき2桁又は3桁とする。
- (3) 浮遊物質は、反応タンク混合液では MLSS、返送汚泥では RSSS、その他では SS と記す。
- (4) 最初沈殿池を初沈、最終沈殿池を終沈とする場合がある。
- (5) 処理水とは最終沈殿池越流水とする。
- (6) 生物試験では、観察されないものは空欄とする。
- (7) 生物試験の記載は、原生動物及び後生動物の出現状況に応じて5群に分類し、分類できない ものはその他に分類する。
- (8) I 群、V 群、その他に分類されるもののうち、鞭毛虫類及び *Spirochaeta* については、顕微鏡における倍率 100 倍での 1 視野内の平均個体数として rr(2 個以下)、r(2~5 個)、+(6~19 個)、++(20~99 個)、+++(100 個以上)の 5 段階の等級で表示し、各群の合計数には含めない。また糸状細菌は下水試験法に準じ、繁殖度合いの少ない方から、-、rr、r、+、++、+++、+++の 7 段階で表記する。

5 試験方法及び試験成績表示方法 (1) 下水試験(下水、事業場排水)

(1) l'A	/DT//	则大(一	小八日		997 JAP	///					1		L. S.L.
試	験		項	目	単	位	試	験		方	法	定量下限值	表 示 法 最 小 単 位	
気	温	•	水	温	ຳ	\mathcal{C}	下水試験方法	₹ 2.1.2					小1位	3
濁				度	厚	芸	下水試験方法	£ 2.1.5 (積分球式光	電光度法)		0.1	小1位	2
電	気	伝	導	率	μS	/cm	JIS K 0102	13				1	1位	3
		рΗ	[下水試験方法	£ 2.1.8 (ガラス電極	法)			小1位	3
蒸	発	残	留	物	mg	/L	下水試験方法	£ 2.1.9				1	1位	3
溶	解	性	物	質	mg	·/L	溶解性物質=	蒸発残留	物-浮遊物	可質		1	1位	3
浮	遊物	質	(S	S)	mg	/L	下水試験方法	₹ 2.1.12	(ガラス繊	維ろ紙法)		1	1位	3
強	熱	残	留	物	mg	·/L	下水試験方法	₹ 2.1.10				1	1位	3
強	熱		減	量	mg	/L	下水試験方法	₹ 2.1.11				1	1位	3
溶	存		酸	素	mg	/L	下水試験方法	₹ 2.1.19	(隔膜電極	法)		0.1	小1位	2
В		Ο		D	mg	/L	下水試験方法	£ 2.1.21				1.0	小1位	2
С	_	В	Ο	D	mg	/L	下水試験方法	₹ 2.1.21	(ATU添	加濃度は1.0 mg	/1)	1.0	小1位	2
С		Ο		D	mg	/L	下水試験方法	₹ 2.1.22	(KMnO4	消酸銀法)		1.0	小1位	2
全		窒		素	mg	/L	下水試験方法	₹ 2.1.29	(紫外線吸	光光度法)		0.2	小l位	2
ア	ンモ	ニラ	ク性質	窒 素	mg	/L	下水試験方法	₹ 2.1.25	(イオンクロマトク	`ラフ法)		0.1	小1位	2
亜	硝香	夋 忄	生 窒	素	mg	/L	下水試験方法	₹ 2.1.26	(イオンクロマトク	`ラフ法)		0.1	小1位	2
硝	酸	性	窒	素	mg	/L	下水試験方法	₹ 2.1.27	(イオンクロマトク	`ラフ法)		0.1	小1位	2
全		ij		ん	mg	/L	下水試験方法	£ 2.1.30	(ペルオキソ二石	流酸カリウム分解法参	考)	0.02	小2位	2
酢				酸	mg	/L	イオンクロマ	・トグラフ	法			1	1位	2
^	キサ	ン担	由出生	物 質	mg	/L	下水試験方法	₹ 2.1.40	(抽出法)			1	1位	2
大	腸	菌	群	数	個/	cm ³	下水試験方法	£ 6.4.2 (平板培養法	₹)		0	1位	2
ト	リクロ	р.	エチ	レン	mg	/L	下水試験方法	2.2.5(^ッ	ト゛スへ゜ースーカ゛	スクロマトグラフ質量分れ	折法)	0.01	小2位	2
テ	トラク		エチ	レン	mg	/L	下水試験方法	2.2.5(^ッ	ト゛スペースーガ	スクロマトグラフ質量分れ	折法)	0.01	小2位	2
ジ	クロ	口	メゟ	マン	mg	/L	下水試験方法	2.2.5(^y	·ト゛スヘ゜ースーカ゛	スクロマトグラフ質量分れ	折法)	0.02	小2位	2
四	塩	化	炭	素	mg	/L	下水試験方法	2.2.5(^y	ト゛スへ゜ースーカ゛	スクロマトグラフ質量分れ	沂法)	0.002	小3位	2
1,	2-ジク	フロ	口工	タン	mg	/L	下水試験方法	2.2.5(^")	ト゛スへ゜ースーカ゛	スクロマトグラフ質量分れ	沂法)	0.004	小3位	2
1,	1-ジク	ロロ	エチ	レン	mg	/L	下水試験方法	2.2.5(^ッ	ト゛スへ゜ースーカ゛.	スクロマトグラフ質量分れ	折法)	0.1	小1位	2
シスー	-1,2-ジ	クロ	ロエチ	・レン	mg	/L	下水試験方法	2.2.5(^")	ト゛スへ゜ースーカ゛	スクロマトグラフ質量分れ	沂法)	0.04	小2位	2
1, 1	, l- ト !	リクロ	בםם	ニタン	mg	/L	下水試験方法	2.2.5(^")	ト゛スへ゜ースーカ゛	スクロマトグラフ質量分れ	沂法)	0.3	小1位	2
1, 1	, 2-トリ	リ ク1		タン	mg	/L	下水試験方法	2.2.5(^ッ	ト゛スペースーガ	スクロマトグラフ質量分れ	<u> </u>	0.006	小3位	2
1,3	3-ジク		プロ	ペン	mg	/L	下水試験方法	2.2.5(^")	ト゛スへ゜ースーカ゛	スクロマトグラフ質量分れ	· : : : : : : : : : : : : : : : : : : :	0.002	小3位	2
ベ	ン		ゼ	ン	mg	/L	下水試験方法	2.2.5(^")	ト゛スへ゜ースーカ゛	スクロマトグラフ質量分れ	沂法)	0.01	小2位	2
1,	4 - 3	シオ	+ 1	サン	mg	/L	下水試験方法	2.2.7(^")	ト゛スへ゜ースーカ゛.	スクロマトグラフ質量分れ	沂法)	0.05	小2位	2
ト	ル		エ	ン	mg	/L	下水試験方法	2.2.5(^")	ト゛スへ゜ースーカ゛.	スクロマトグラフ質量分れ	折法)	0.01	小2位	2
ほ		う		素	mg	·/L	下水試験方法	£ 3. 2. 15	(ICP質量分	· 析法)		0.1	小1位	2
ふ		っ		素	mg		下水試験方法					0.8	小1位	2
														j

下水試験 つづき

ト水試験 うつき	3						
試 験 項	目	単 位	試験	方法	定量下限值	表 示 录 最小単位	方 法 桁数
チゥラ	ム	mg/L	下水試験方法 2.2.6 (高	速液体クロマトグラフ)	0.006	小3位	2
シマジ	ン	mg/L	下水試験方法 2.2.6 (ħ゙	スクロマトグラフ質量分析法)	0.003	小3位	2
チオベンカ	ルブ	mg/L	下水試験方法 2.2.6 (f)	スクロマトグラフ質量分析法)	0.02	小2位	2
セレ	ン	mg/L	下水試験方法 3.2.7 (IC	CP質量分析法)	0.005	小3位	2
全 シ ア	ン	mg/L	下水試験方法 2.1.33 (4	1-ピリジンカルボン酸ーピラゾロン法)	0.1	小1位	2
フェノー	ル類	mg/L	下水試験方法 2.1.42 (四	吸光光度法)	0.5	小1位	2
有 機 り	h	mg/L	下水試験方法 2.2.2 (ガ	スクロマトグラフ法)	0.1	小1位	2
銅		mg/L	下水試験方法 3.2.8 (I(CP質量分析法)	0.02	小2位	2
亜	鉛	mg/L	下水試験方法 3.2.9 (IC	CP質量分析法)	0.05	小2位	2
鉛		mg/L	下水試験方法 3.2.2 (IC	CP質量分析法)	0.005	小3位	2
カドミ	ウム	mg/L	下水試験方法 3.2.1 (I(CP質量分析法)	0.003	小3位	2
全 水	銀	mg/L	下水試験方法 3.2.5 (還	元気化原子吸光法)	0.0005	小4位	2
アルキル	水 銀	mg/L	下水試験方法 2.2.4 (ガ	スクロマトグラフ法)	0.0005	小4位	2
全 クロ	4	mg/L	下水試験方法 3.2.3 (IC	CP質量分析法)	0.05	小2位	2
六価ク	ロム	mg/L	下水試験方法 3.2.4(吸	光光度法)	0.05	小2位	2
溶解性マン	ガン	mg/L	下水試験方法 3.2.13 (I	(CP質量分析法)	0.05	小2位	2
溶 解 性	鉄	mg/L	下水試験方法 3.2.11 (I	(CP質量分析法)	0.05	小2位	2
ひ	素	mg/L	下水試験方法 3.2.5 (IC	CP質量分析法)	0.005	小3位	2
P C	В	mg/L	下水試験方法 2.2.3 (ガ	スクロマトグラフ質量分析法)	0.0005	小4位	2
アンチ	モン	mg/L	下水試験方法 3.2.18 (I	CP質量分析法)	0.005	小3位	2
銀		mg/L	下水試験方法 3.2.34 (I	CP質量分析法)	0.005	小3位	2
ニッケ	ル	mg/L	下水試験方法 3.2.16 (I	(CP質量分析法)	0.005	小3位	2
モリブ・	デン	mg/L	下水試験方法 3.2.17 (I	CP質量分析法)	0.005	小3位	2
ダイオキシ	ン類	*	JIS K 0312		_		_

^{*} ダイオキシン類は pg-TEQ/L (TEQ:2,3,7,8-四塩化ジベンゾーパラージオキシンの毒性に換算した値)

(2) 反応タンク試験

()	///////	ノノノロ	上小沙人											
試	験	項	目	単	位	試験	方	法	表最	小	示 単	位	方 桁	<u>法</u> 数
水			温	ໍໃ	C	下水試験方法 4.1.2				小1	位		3	
	р	Н				下水試験方法 4.1.4	(ガラス電極法)			小1	位		3	
浮遊物	勿質(M	LSS, R	(888	mg	/L	下水試験方法 4.1.6	(ガラス繊維ろ紙法)			14	垃		3	
有機性	上浮遊 特	勿質(Mi	LVSS)	mg	/L	下水試験方法 4.1.7				14	立		3	
有機!	生浮遊	物質百	f 分率	9	6	有機性浮遊物質百分	率=MLVSS/MLSS×100			14	立		2	
活性污	影泥沈 属	段率 (2	SV)	V0	1%	下水試験方法 4.1.8				14	垃		2	
溶	存	酸	素	mg	/L	下水試験方法 4.1.9	(隔膜電極法)			小1	位		2	
生	物	試	験	個/	/mL	下水試験方法 6.3 個体数の数えにくい (-、rr、r、+、++				10	位.		3	

(3) 汚泥 (脱水ケーキ) 試験

試	験		項	目	単	位	試験方	法	定量下限値	表 示 方 最小単位	
		рН					下水試験方法 5.1.5(ガラス電極法)			小1位	3
固形	分(蒸発	残留	物)	(%	下水試験方法 5.1.6			小1位*	2*
有機	後分	(強	熱減量	量)	(%	下水試験方法 5.1.8			小1位	3
		銅			mg	/kg	下水試験方法 3.2.8(ICP質量分析法)		5	1位	2
亜				鉛	mg	/kg	下水試験方法 3.2.9(ICP質量分析法)		5	1位	2
全				鉄	mg	/kg	下水試験方法 3.2.10 (ICP質量分析法)		5	1位	2
全	マ	ン	ガ	ン	mg	/kg	下水試験方法 3.2.12(ICP質量分析法)		5	1位	2
カ	ド	3	ウ	L	mg	/kg	下水試験方法 3.2.1 (ICP質量分析法)		1	1位	2
		鉛			mg	/kg	下水試験方法 3.2.2(ICP質量分析法)		5	1位	2
全	ク		П	ム	mg	/kg	下水試験方法 3.2.3(ICP質量分析法)		5	1位	2
ひ				素	mg	/kg	下水試験方法 3.2.5(ICP質量分析法)		1	1位	2
全		水		銀	mg	/kg	下水試験方法 3.2.6(還元気化原子吸光法)		0.025	小3位	2
セ		ν		ン	mg	/kg	下水試験方法 3.2.7(ICP質量分析法)		1	1位	2
ほ		う		素	mg	/kg	下水試験方法 3.2.15(ICP質量分析法)		5	1位	2
	ッ		ケ	ル	mg	/kg	下水試験方法 3.2.16(ICP質量分析法)		5	1位	2
モ	IJ	ブ	デ	ン	mg	/kg	下水試験方法 3.2.17(ICP質量分析法)		1	1位	2
		銀			mg	/kg	下水試験方法 3.2.34 (ICP質量分析法)		1	1位	2
ア	ン	チ	モ	ン	mg	/kg	下水試験方法 3.2.18(ICP質量分析法)		1	1位	2

(単位は、固形分を除き、汚泥乾燥重量当たり)

*:脱水ケーキについては最小単位:小2位、桁数:4で表示

(4)消化ガス試験

試	験	佰	п	単	位	1.1	験		定量下限値	表示	方 法
弘人	尚 欠	項	目	毕	11/	祁	尚 哭	方	企里下 限個	最小単位	桁数
メ	Ś	7	ン	%	6	下水試験方法	5.5.2	(ガスクロマトグラフ法)	0.1	小1位	3
炭	酸	ガ	ス	%	6	下水試験方法	5.5.2	(ガスクロマトグラフ法)	0.1	小1位	3
硫	化	水	素	%	6	下水試験方法	5. 5. 3	(ガスクロマトグラフ法)	0.001	小3位	2

JIS K 0102 : JIS K 0102(2008)
JIS K 0312 : JIS K 0312(2008)
下水試験方法 : 下水試験方法(2012)

番号は編、章、節の順に表記している (例 1.3.3→第1編第3章第3節)

6 排水基準

浄化センターに係る放流水の排水基準については次のとおりである。 北九州市の浄化センターは、すべて瀬戸内海水域に係る上乗せ基準が適用される。

生活環境項目を別表第1に、有害物質を別表第2に掲げる。

別表第1	単位:mg/L	(水素イオン濃度を除く	。大腸菌群数は個/mL)
77 1 1	T 134 · 1110/ 11		

<u> </u>	中心・川8/	し、小糸14	ノ侲及を防く。	入 肠 困 奸	奴(47回/1111/
	下水道法に	水質汚濁隊	方止法に規定す	瀬戸内海	水域に係
	規定する放	る一律基準	準(許容限度)	る上乗せ	排水基準
項目	流水の水質	2)		3)	
	の技術上の	日間平均	最大	日間平	最大
	基準 1)	口间十均	取八	均	取八
水素イオン濃度(pH)	$5.8 \sim 8.6$	5.8~8.6	$(5.0 \sim 9.0) \ 1)$		
生物化学的酸素要求量(BOD)	15(70) ウ)	120	160	20	30
化学的酸素要求量(COD)*		120	160		
浮遊物質量(SS)	40	150	200	70	100 7)
ヘキサン抽出物質(鉱油類)			5		
ヘキサン抽出物質(動植物油脂類)			30		
フェノール類含有量			5		
銅 含 有 量			3		
亜 鉛 含 有 量			2		
溶解性鉄含有量			10		
溶解性マンガン含有量			10		
クロム含有量			2		
大 腸 菌 群 数	3,000	3,000			
室 素 含 有 量*		60	120		
り ん 含 有 量*		8	16		

- 1) 下水道法施行令第6条(昭和34年政令第147号)
- 2)排水基準を定める総理府令(昭和46年総理府令第35号)
- 3) 水質汚濁防止法第3条第3項の規定に基づく排水基準を定める条例(昭和48年福岡県 条例第8号)
- * 総量規制基準 $L = C \times Q \times 10^{-3} \, \text{kg}$

C値:COD:20mg/L

窒素:20mg/L

りん:2mg/L

Q値:現有施設における処理能力(m³/日)

- ア) 洞海湾、響灘(若松区妙見崎灯台から、日明浄化センターに至る陸岸の地先海域)を 除く瀬戸内海水域に排出水を排出する浄化センターに係る基準。 新町、曽根浄化センターが該当する。
- イ) ()内は海域を放流先とする場合の基準。日明浄化センター、皇后崎浄化センター第 二処理施設が該当する。
- り) ()内は合流式公共下水道の雨天時放流水に係る暫定基準(下水道法施行令第6条2項、附則第5条(平成15年9月25日政令第435号))。 曽根浄化センターを除く 各浄化センターが該当する。

別表第2 単位:mg/L

		_
項 目	下水道法に規定する放流水 の水質の技術上の基準 1)	
1 10 2 12 17 20 27 0 11 1 1 1 1 1		0.00
カドミウム及びその化合物		0.03
シアン化合物		l
有機りん化合物		1
鉛及びその化合物		0.1
六価クロム化合物		0.5
ひ素及びその化合物		0.1
水銀及び水銀化合物		0.005
アルキル水銀化合物		検出されないこと。
P C B		0.003
トリクロロエチレン		0.1
テトラクロロエチレン		0.1
ジクロロメタン		0.2
四塩化炭素		0.02
1,2-ジクロロエタン		0.04
1,1-ジクロロエチレン		1
シス-1,2-ジクロロエチレン		0.4
1,1,1-トリクロロエタン		3
1,1,2-トリクロロエタン		0.06
1,3-ジクロロプロペン		0.02
チ ウ ラ ム		0.06
シマジン		0.03
チォベンカルブ		0.2
ベンゼン		0.1
セレン		0.1
ほう素及びその化合物		10(230) 1)
ふつ素及びその化合物		8 (15) 1)
室 素 化 合 物		100 I)
1,4-ジオキサン		0.5
ダイオキシン類	10 pg	-TEQ/L オ)

- 1) 下水道法施行令第6条(昭和34年政令第147号)
- 2) 排水基準を定める省令(昭和46年総理府令第35号)
- 1) ()内は海域を放流先とする場合の基準。日明浄化センター、皇后崎浄化センター第二処理施設が該当する。
- エ) アンモニア性窒素×0.4+亜硝酸性窒素+硝酸性窒素の合計値
- オ) ダイオキシン類対策特別措置法水質基準対象施設に係る基準 ダイオキシン類対策特別措置法施行規則第1条(平成11年総理府令第67号)

7 環境基準

浄化センターの放流水の放流水域とその水域の類型指定状況及び環境基準値は次のとおりである。(水質汚濁に係る環境基準について 昭和46年環境庁告示第59号)

(1)人の健康の保護に関する基準(全公共用水域が対象)

項				目	基準	値
力	ド	3	ウ	ム	0.003 mg/L 以	下
全	シ		P	ン	検出されないこ	と。
		鉛			0.01 mg/L以 ⁻	下
六	価	ク	口	ム	0.02 mg/L以 ⁻	下
砒				素	0.01 mg/L以 ⁻	下
総		水		銀	0.0005 mg/L 以	大下
ア	ル	キノ	レ水	銀	検出されないこ	と。
Р		С		В	検出されないこ	と。
ジ	クロ		メ タ	ィン	0.02 mg/L以 ⁻	下
四	塩	化	炭	素	0.002 mg/L 以	下
1	, 2 - ジ	, クロ	ロエ	タン	0.004 mg/L以	下
1,	1 - ジ	クロロ	コエチ	レン	0.1 mg/L以T	₹
シ	ス-1,2	- ジクロ	ロエチ	・レン	0.04 mg/L以 ⁻	下
1,	1,1-	トリク	ппл	タン	1 mg/L以下	
1,	1,2-	トリク	ппл	タン	0.006 mg/L以	下
ト	リク		エチ	レン	0.01 mg/L以 ⁻	下
テ	トラク	7 口 口	エチ	レン	0.01 mg/L以 ⁻	下
1 ,	3 - ジ	クロロ	コプロ	ペン	0.002 mg/L 以	下
チ	才 ^	ベン	カル	ノブ	0.02 mg/L以 ⁻	下
シ	7	?	ジ	ン	0.003 mg/L 以	下
チ	Ļ	7	ラ	ム	0.006 mg/L以	下
ベ	٤	/	ゼ	ン	0.01 mg/L以 ⁻	下
セ		ν		ン	0.01 mg/L以 ⁻	下
硝	酸性窒素	奏及び 亜	百硝酸性	空素	10 mg/L 以下	•
ふ		つ		素	0.8 mg/L以T	₹
ほ		う		素	1 mg/L以下	
1	, 4 -	ジオ	· + ·	サン	0.05 mg/L以 ⁻	下

- 備考 1 基準値は年間平均値とする。ただし、全シアンに係わる基準値については、最 高値とする。
 - 2 「検出されないこと」とは、環境庁が定めた測定方法により測定した場合において、その結果が当該方法の定量限界を下回ることをいう。以下、同じ。
 - 3 海域については、ふつ素及びほう素の基準値は適用しない。

(2) 生活環境の保全に関する環境基準 (河川)

水				域	村	中	Щ	竹	馬	Ш	割	子	Щ	新栄	盛川第 1	支流
類				型		В			D			D			_	
達	成	ļ	钥	間		イ			イ			イ			_	
		р	Н			.5以上 .5以下			.0以上 .5以下			i.0以」 I.5以7			_	
項	В	C)	D	3 m	ıg/L 以	下	8 r	ng/L以	下	8 1	mg/L 以	下		_	
目	S			S	25 1	mg/L 以	下	100	mg/L J	以下	100	mg/L J	以下		_	
	溶	存配	要素	量	5 m	ıg/L 以	上	2 r	ng/L以	上	2	mg/L 以	上		_	
	大	腸	菌	数	1,000(CFU/100m	L以下		_			_			_	
備考	浄イ	とセ	ンタ	? —	新		町	曽		根	皇	后	崎	北		湊

達成期間の分類「イ」は直ちに達成

(3) 生活環境の保全に関する環境基準(海域)

水			域	洞海湾湾口	部	奥	洞	海	響灘·	周防灘	周	防	灘
類			型	В			С		A	\		Α	
達	成	期	間	П			口		1	•		ハ	
		Ηд		7.8以上 8.3以下			.0以上 .3以下		7.8 L 8.3 L			.8以上 .3以下	
項	С	Ο	D	3 mg/L 以下	.	8 r	ng/L 以	下	2 mg/L	以下	2 m	ng/L以 ⁻	下
目	溶存	酸素	量	5 mg/L 以上	<u>.</u>	2 r	ng/L 以	上	7.5 mg/	L以上	7.5	mg/L 以	上
	大月	易菌	数	_			_		300 CFU/10)0mL 以下	300 C	FU/100mL.	以下
	ヘキサン	抽出物	勿質	検出されないこ	と。		_		検出された	れてと。	検出	されないこ	と。
備考	浄化	センタ	-	日	明	皇	后	崎	新町、	北湊	曽		根

達成期間の分類「イ」は、直ちに達成

達成期間の分類「ロ」は、5年以内で可及的すみやかに達成 達成期間の分類「ハ」は、5年を超える期間で可及的すみやかに達成

(4) 生活環境の保全に関する環境基準 (海域の窒素及び燐に係る環境基準)

水			域	響	灘	及	7	ŗ	周	防	灘	洞			消	爭			湾
類			型				Ι	Ι							Γ	V			
達	成	期	間	直	ち	に	達	成	す	る	0	直	ち	に	達	成	す	る	0
項	全	窒	素			0.3	mg/	'L 以	下					1	mg/	L以 ⁻	ド		
目	全	Ŋ	h			0.03	3 mg	/L L	以下					0.0)9 mg	:/L L	下		
備考	浄化	センク	ター	新	町	`	北	湊	`	曽	根	日	明		`	皇	J		崎

(5) ダイオキシン類による水質の汚濁に係る環境基準

(平成 11 年 12 月 27 日 環境庁告示第 68 号)

媒体	基準値
水質	lpg-TEQ/L以下

(6)水生生物の保全に係る水質環境基準 (海域)

水			域	響灘及び周防灘(響灘及び周 響灘及び周防灘(イ)に係る部分を除く。)
類			型	海域生物 A 海域生物特 A
達	成	期	間	直ちに達成する。直ちに達成する。
	全	亜	鉛	0.02 mg/L 以下 0.01 mg/L 以下
項目	ノニルフ	゚ェノール		0.001 mg/L以下 0.0007 mg/L以下
		ンキルベン / 酸及びそ		0.01 mg/L以下 0.006 mg/L以下
備考	浄 化	センク	ター	日明、北湊、皇后崎新町、曽根

8 管理指標

(1)表示方法

項目	単位	最小単位	桁 数	備考
S V I (汚 泥 容 量 指 標)	mL/g	1位	2	下水試験方法 4.1.8 下水道維持管理指針(2014)実務編p521
S R T (固 形 物 滞 留 時 間)	日	小1位	2	下水試験方法 4.1.6 下水道維持管理指針(2014)実務編p25
B O D - S S 負 荷	kg/SSkg·日	小2位	2	下水道維持管理指針(2014)実務編p25
処 理 場 流 入 水 量	×100m³/日	1位	3	場内循環水含む
反応タンク流入水量	m³/hr・槽	1位	2	
最 初 沈 殿 池 沈 殿 時 間	hr	小1位	2	
返 送 汚 泥 率	%	1位	2	
送 気 倍 率	倍	小1位	2	
反応タンク滞留時間	hr	小1位	2	
最終沈殿池沈殿時間	hr	小1位	2	
終沈水面積負荷	m³/m²・日	1位	2	下水道維持管理指針(2014)実務編p508
余 剰 汚 泥 引 抜 率	%	小1位	2	
塩 素 注 入 率	mg/L	小1位	2	
濃縮タンク投入汚泥量	m³/日	1位	3	
濃縮タンク滞留時間	hr	小1位	2	下水道維持管理指針(2014)実務編p794
濃縮タンク固形物負荷	kg/m²·∃	小1位	2	下水道維持管理指針(2014)実務編p794
消 化 日 数	日	小1位	2	下水道維持管理指針(2014)実務編p840
消 化 率	%	1位	2	下水道維持管理指針(2014)実務編p838
ガス発生率	倍	小1位	2	下水道維持管理指針(2014)実務編p840

注) 処理場流入水量等の運転条件は採水日前日9:00~採水日当日8:00の値である。 (一部浄化センターは前日10:00~当日9:00)

(2) 計算方法

SVI (mL/g) =
$$\frac{\text{SV(vol\%)} \times 10^4}{\text{MLSS (mg/L)}}$$

SRT(日) =
$$\frac{ \overline{\Sigma} \sum_{m=1}^{n} \overline{\Sigma} \sum_{$$

返送汚泥率
$$(\%) = \frac{$$
返送汚泥量 (m^3/H) $}{反応タンク流入水量 (m^3/H) $} × 100$$

反応タンク滞留時間
$$(hr) = \frac{反応タンク容量 (m^3) \times 24 (hr/日)}{反応タンク流入水量 (m^3/日)}$$

最終沈殿池沈殿時間(
$$hr$$
) = $\frac{最終沈殿池容量(m^3) \times 24(hr/日)}{反応タンク流入水量(m^3/日)}$

余剰汚泥引抜率
$$\left(\%\right) = \frac{$$
余剰汚泥量 $\left(m^3/H\right)}{反応タンク流入水量 \left(m^3/H\right)} \times 100$

塩素注入率(
$$mg/l$$
) = $\frac{$ 次亜塩素酸ソーダ量 $(l) \times 1.2 \Big($ 比重 $\Big) \times 0.12 \Big($ 有効塩素 $\Big)$ $\times 1000$ 処理場流入水量(m^3/H)

濃縮タンク滞留時間
$$(hr) = \frac{ 濃縮タンク容量 (m^3) \times 24 (hr/日)} { 濃縮タンク投入汚泥量 (m^3/日)}$$

重力式濃縮タンク固形物負荷(kg/m²・日) =
$$\frac{初沈引抜汚泥固形分(%)×濃縮タンク投入汚泥量(m³/日)×10濃縮タンク水面積(m²)$$

浮上式濃縮タンク固形物負荷(
$$kg/m^2$$
・日) = $\frac{RSSS (mg/L) \times 濃縮タンク投入汚泥量 (m^3/日)}{ 濃縮タンク水面積 (m^2) \times 1000}$

消化日数 (日) =
$$\frac{消化タンク容量 (m^3)}{消化タンク投入汚泥量 (m^3/日)}$$

消化率
$$\left(\%\right) = \frac{$$
消化タンク投入汚泥無機分 $\left(\%\right)$ ×消化汚泥有機分 $\left(\%\right)$
消化タンク投入汚泥有機分 $\left(\%\right)$ ×消化汚泥無機分 $\left(\%\right)$

ガス発生率(倍) =
$$\frac{$$
発生ガス量($m^3/日$)
消化タンク投入汚泥量($m^3/日$)